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Summary

The present research has two main objectives: assessing how Sentinel-1 C-band
synthetic aperture radar (SAR) data works for wildfires and prescribed fires, when
compared to Landsat data; and also at evaluating if wildfires have similar fire
severity when compared to prescribed fires. To assess these issues, the study
was conducted in Alto Minho, a subregion of Portugal, using Landsat data to
create a multitemporal analysis. For the SAR response to fire events, Sentinel-1
backscatter values were used, and 29 variables were tested in order to see which
ones behave more similarly to the spectral indices. For the comparison between
prescribed fires and wildfires, the analyses was conducted using Normalized
Burn Ratio (NBR) and Normalized Difference Vegetation Index (NDVI). Using
visual interpretation to analyse the SAR response, the Normalized Signal Ratio
in percentile 90 (NSR p_90) seems to work properly for areas covered with grass
and small bushes, but it also seems to work best when the fire severity in the
area is greater. 95% of the plots analysed by NSR p_90 were considered as a
good response to fires, when compared to spectral indices. As for the evaluation
of wildfires and prescribed fires severity, severity of summer wildfires are
significantly different from severity of prescribed fires. Winter/autumn wildfires are
not significantly different in terms of severity from prescribed fires.



Introduction

Wildfires are common in many ecosystems, constituting a natural - even
vital - component of the ecology of some forests. However, the large-scale fires
with high severity and intensity, that have recently been documented, can be
highly destructive (Lourenco and Félix, 2019). This culminates in an imbalance
between the wildfire occurrences and the recovery of the ecosystem, which leads
to an undesirable alteration of the landscape, and its consequent degradation
(Alcafiz et al., 2018).

Fire severity is defined by the loss of or change in organic matter in the
soil. Ecosystem responses after the fire, such as soil erosion, vegetation
regeneration and restoration of community structure, can be linked to this change
in organic matter (Keeley, 2009). There are many variables that influence fire
severity, including elevation, slope and aspect (Harris & Taylor, 2017; Lentile,
Smith, & Shepperd, 2006), weather and climate (Dillon et al., 2011; Arkle et al.,
2012), forest structural characteristics, such as tree density and tree diameter
(Lentile et al., 2006; Alexander et al., 2006), and also the fire history of the area
(Coppoletta, Merriam, & Collins, 2015; Harvey, Donato, & Turner, 2016; Airey
Lauvaux, Skinner, & Taylor, 2016). Fire severity can be easily measured, with
remote sensing and soil analyses, but the ecosystem response, that is the most
valuable factor for forest managers, is way more complex to assess (Keeley,
2009).

Fuel treatments, such as thinning and prescribed fires, are conducted to
alter fuel conditions, in an attempt to make wildfires less severe (Reinhardt,
Keane, Calkin, & Cohen, 2008). Prescribed burnings are usually conducted in the
spring or fall when climate is cooler and moister, and fire spread and size can be
easily controlled (Arkle et al., 2012). Prescribed fires conducted under such
conditions can reduce severity and modify the spreading of following wildfires
(Finney, McHugh, & Grenfell, 2005; Wimberly, Cochrane, Baer, & Kari, 2009;
Fulé et al., 2012; Arkle et al., 2012). However, even though it is assumed that
prescribed fires are of low severity, studies have shown that in North-western
Portugal ten percent of them have an excessive impact on trees and forest floor
(P. Fernandes & Botelho, 2004).

It is difficult to map severity levels in large fires using field-based methods,
especially in the Mediterranean areas that have complex topography, steep
slopes, inaccessible areas and previous heterogeneous vegetation. After a fire,
the burning of the vegetation and the changes in soil moisture make the spectrum
of the area change, enabling the evaluation of the area using satellite optical
images (Escuin, Navarro, & Fernandez, 2008). Nowadays, Landsat imagery at
30-m spatial resolution has been widely used for fire severity evaluation at
landscape level, and the most common spectral indices used for this purpose
have been the Normalized Difference Vegetation Index (NDVI) and the
Normalized Burn Ratio (NBR) (Mallinis, Mitsopoulos, & Chrysafi, 2018), with the
NBR being shown as much more sensitive than NDVI to the spectral changes
produced by fires with a moderate or extreme severity (Escuin et al., 2008).

Although the results from studies that use optical imagery are satisfactory
to monitor and evaluate fire severity, there are also limitations regarding these
images, such as presence of clouds, smoke and haze, which reduce the
observation capability in the visible/infrared domain. Also, the 16 day-revisit time
for Landsat can be considered a limitation when the study focuses on monitoring



the area. Apart from that, there can be also confusion of burned areas with dark
soils, shaded regions and water bodies (Imperatore et al., 2017).

Sentinel-1 responds to the Earth Observation needs of the European
Union (EU) and has two-satellite constellation (1A and 1B) in the same orbiting
pattern, offering six day revisit at the equator and working with a C-band Synthetic
aperture radar (SAR) (Torres et al., 2012). Sentinel-1 A and Sentinel-1 B were
launched on 03 April 2014 and 25 April 2016, respectively (Colson, Petropoulos,
& Ferentinos, 2018) and they offer new opportunities for a systematic monitoring,
as they are insensible to sunlight-illumination conditions and work with microwave
radiation that allows to penetrate clouds (Imperatore et al., 2017).

The use of satellite imagery to classificate burn severity is more and more
used to study the effects of prescribed burning and wildfires (P. M. Fernandes,
2015), but still there is a lack of studies about how different is the ecosystem
responses after the events of prescribed fires and wildfires, specially using
spectral indices. Furthermore, the optical imagery have its own important
limitations and there is a gap in the literature about the use of SAR to analyse
burned areas.

Literature Review

All these variables that help the prediction of fire severity T e.g.
topography, weather, and vegetation type - seem to interact with each other in
complex ways, and what is true to one area can have the opposite effect on
another area. Prescribed fire effectiveness in decreasing the importance of
wildfires is dependent on even more variables. Apart from the above mentioned
variables, other factors that influence the effectiveness of prescribed fires are
treatment longevity, size of treated area, spatial patterns and location of the
treated area in relation to subsequent wildfires (P. M. Fernandes, 2015).
Prescribed fires have different results of effectiveness depending on the
combinations of these factors.

The current evidence suggests that prescribed fires will only have a
relevant impact on wildfire extent if a significant part (51 10 %) of the landscape
is treated annually, but the lack of resources make it impossible to treat the
necessary area of the landscape every year, therefore prescribed burnings do
not have concrete effect on wildfire extent (P. M. Fernandes, 2015). Also, Pifiol,
Beven, & Viegas (2005) evaluated how different degrees of prescribed fires
influence the areas affected by wildfires in Northeast Spain and Central Portugal,
and they found that every year a fairly constant size of area is burnt, for both
prescribed burns and wildfires together, independently of the prescribed fires
treatments. Consequently, it seems that even though prescribed burnings are
used in an attempt to decrease the total area burnt every year, chances are they
will stay relatively the same.

In addition to that P. Fernandes & Botelho (2004) found that, in normal fire
weather, 89% of the prescribed fires comply with wildfire protection needs and
ecological integrity maintenance, but in extreme fire weather, only 59% of the
prescribed burnings would comply with such terms. Furthermore, after prescribed
fires conducted from autumn to spring, the fire behaviour varied from barely
sustained and patchy burns to high-intensity and nearly crown fires (P. M.
Fernandes & Loureiro, 2013).

Most prescribed fires are small, focused on individual stands and as
analysis tool, most studies make use of field-based interpretation (i.e. P.



Fernandes & Botelho, 2004; P. M. Fernandes & Loureiro, 2013; Prichard,
Peterson, & Jacobson, 2010) or even spatial autoregressive models (Wimberly
et al., 2009). However, according to Cruz, Alexander, & Dam (2014) studies using
fire modeling systems to assess prescribed fires effectiveness may not be valid
because small changes, even smaller than 2.5%, in the estimated moisture
content of fine dead fuel, can produce greatly varying results on the predicted
fireline intensity, spread of fire and the onset of crown ignition. With such
problems in mind and with the advantage of new free sensors, other studies (i.e
Finney et al., 2005; Arkle et al., 2012; Collins, Griffioen, Newell, & Mellor, 2018)
have assessed wildfire severity of treated areas using landscape scale remote
sensing.

Satellite open data allows a large audience of researchers to test methods
for interpreting phenomena impacting the Earth surface. Some studies in the
Mediterranean region, have tested the capacity of different indices that combine
red and near-infrared regions to distinguish burned areas. NDVI (Normalized
Difference Vegetation Index) is one of them and has been one of those most
used, with procedures involving uni-temporal (post-fire) and bi-temporal (pre-fire
and post-fire difference) point of view (Pereira, 1999); (Chuvieco, Martin, &
Palacios, 2002). In the past, NBR (Normalized Burn Ratio) was less used than
NDVI due to the lack of availability of data on the mid-infrared region in the
sensors used at that time, such as AVHRR and WIFS. With LANDSAT TM/ ETM
and mid-infrared region images (band 7 in the TM/ETM sensors), NBR became
more used (Escuin et al., 2008).

Even though the most common indices to evaluate fire severity are NDVI
and NBR (Escuin et al., 2008; Mallinis et al., 2018), different studies (Chuvieco
et al., 2002; Chen et al., 2011; Veraverbeke et al., 2012) try to find new indices
that could improve the analyses of this important issue that is wildfires, such as
BAI (Burnt Area Index), SAVI (Soil Adjusted Vegetation Index), IFI (integrated
forest index), EVI (enhanced vegetation index), and more, but overall, NBR is still
being considered the best index to assess the effects of fire (Collins et al., 2018).

Optical and SAR data have complementary characteristics that can be
integrated to provide more information to models and methods. The Sentinel 1
C-band SAR data (Torres et al., 2012) and the Sentinel 2 optical multispectral
data (Drusch et al., 2012) provide open date in the two realms of SAR and optical.
The datasets are also available as products in Google Earth Engine (GEE), an
integrated platform designed to empower not only traditional remote sensing
scientists but also a wider audience (Gorelick et al., 2017). With the availability of
both optical and SAR data free of cost and already pre-processed, the
Copernicus datasets represent an optimal and rapid tool for the assessment of
forest damages, such as windthrows.

For instance, in their study Imperatore et al., (2017) used Sentinel-1 C-
band synthetic aperture radar (SAR) data to investigate if such sensor can detect
burned areas in vegetated regions, and concluded that the VH polarization
effectively responded to the fire occurrences, decreasing its value after the fire
event. Also, Stroppiana et al. (2015) tested the SAR sensor to map the areas
likely to be burned using the fuzzy burned area-mapping algorithm that is an
integration of the spectral indices and a region-growing algorithm. However, SAR
provides a unique opportunity for detecting and assessing burn scars in the
landscape, and to the best of our knowledge, only a few studies (Imperatore et



al., 2017; Stroppiana et al. 2015) have addressed the use of SAR data with such
objective.

Objectives

Despite all advances related to fire ecology, the evaluation of prescribed
burning effectiveness will remain a challenge in most ecosystems, both from the
scientist and decision-maker perspectives, especially as climate change will
facilitate more extreme fire events (P. M. Fernandes, 2015). Planning and
monitoring procedures on prescribed burnings need to be improved in Portugal,
as well as in the whole Mediterranean region, in order to overcome the current
deficiencies (P. Fernandes & Botelho, 2004). Furthermore, SAR provides a
unique opportunity for detecting and assessing burn scars in the landscape and
not enough research has been done to assess its functionality for this issue.

Therefore, this study has the objective to evaluate areas burned in wildfire
and prescribed fires using Landsat imagery and SAR data. Specifically, the
objectives are to:

(1) assess if wildfires and prescribed fires bring a significant difference in
backscatter signal of Sentinel 1.

(2) evaluate if wildfires have similar fire severity when compared to prescribed
fires

Hypothesis

(1) Assess how Sentinel 1 data work for wildfires and prescribed fires, when
compared to Landsat data

HO: Sentinel 1 and Landsat data will have similar responses

(2) Evaluate if wildfires have similar fire severity when compared to prescribed
fires

HO: Regeneration will be faster in prescribed burning areas



Methodology
Study area

The study was conducted in the Northwestern subregion of Portugal called
Alto Minho, which covers an area of 221,884 ha, divided by ten municipalities:
Arcos de Valdevez, Caminha, Melgaco, Moncéo, Paredes de Coura, Ponte da
Barca, Ponte de Lima, Valenca, Viana do Castelo e Vila Nova de Cerveira.

The subregion has a warm-summer Mediterranean climate (Csb)
according to Koppen climate classification, with average precipitation ranging
from 28.4 mm in July to 228 mm in December, and average temperature from
9.5°C in January to 20.5°C in July. The dry season is between July and August
(Figure 1) (IPMA, 2019). The fire season in Portugal takes place between June
and September, which corresponds to the warm and dry summer, typical of
Mediterranean climates (Pereira, 1999). The study site was chosen due to its
specially high fire occurrences (Oliveira et al., 2018), and all areas considered for
the analyses of this study were covered by grass and small bushes, belonging to
the Genisteae tribe, which are not used as pasture.
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Fig 1. Location and climate of the study area.

Data Collection

Data on wildfire occurrences were collected from the Institute for Nature
Conservation and Forests website (ICNF, 2020) in the format of shapefiles
containing information on the attribute table such as date of the wildfire, area
burned and cause of occurrence. Not all attributes had complete dates 1 with day,
month and year - being some of them indicated with only year of occurrence. For
such situations, the attributes were deleted, because the exact day of fire
occurrence is critical for the analysis of this study.
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The prescribed fire data, in shapefile format, contains both qualitative and
easily assessed quantitative elements that describe the burn areas and some
behaviour and effects of the fire. For the present study, 70 prescribed fires
conducted between the years 2013-2019 (Figure 2) were initially analysed, and

their areas ranged from 0.19 ha to 32.3 ha.
Alto Minho Fires
(2013 - 2019)

UM =, ; Legend

’ R . I Prescribed Fires
4 ’ Wildfires
Alto Minho

- "0 6 12 18 km

41°42.0'N

Coordinate System: EPSG:4326 - WGS 84

Fig 2. Prescribed fires and wildfires occurrences between 2013 and 2019 in Alto Minho
subregion.

Data on land-use for the years 2010 and 2015 (0.5 meters resolution) were
retrieved from the Portuguese Geographic Institute (IGP), and together with the
prescribed-fire-areas information on slope, aspect, altitude and day of burning,
the first dataset was created. These polygons were then used to find similar
wildfires to allocate the area of the prescribed fire inside the area of the wildfire,
in order to have the same area and shape. Therefore, the wildfires used in this
study had the same format and land--use, similar altitude, aspect and slope, and
took place in either the same season as the prescribed fire, or in the summer of
that same year.

As a result of the allocation of the prescribed fires polygons inside wildfires
polygons, two scenarios were created, depending on the day of the wildfire: the
wildfires in the summer (when fuel is dry and fire severity is expected to be higher)
and wildfires in the winter/autumn, when fire severity is expected to be lower due
to the moister weather.

Sampling

In order to minimize border effects, the polygons smaller than one hectare
and with a distance from border to border smaller than 60 meters were excluded
from the analysis. The 60 meters value was used due to the Landsat resolution
of 30 meters. After that, an inner buffer of 30 m was added to the remaining
polygons for the Landsat analysis, while for the Sentinel analysis, the inner buffer
was of 10 m. Figure 3 shows the difference between the same polygon with and
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without inner buffer for NBR, where it is possible to see that the variability
decreased for the analysis of 10, 25, 50, 75 and 90 percentiles.
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Fig 3. Top: NBR of Landsat data in a polygon without buffer. Bottom: NBR of the same
polygon with inner buffer of 30 m.

After creating the inner buffer, the number of pixels for each polygon were
checked and polygons with less than twenty pixels were excluded from the
analyses, in order to have a more robust statistics, more resistant to outliers. For
Sentinel 1 (table 1), all 40 polygons had more than twenty pixels and therefore
could be used, while for Landsat data (table 2) 13 polygons could be analysed.
Apart from that, the 5 year sbOimagesipor al a
for Sentinel 1 in the period from 3" October 2014 to 22 May 2020. For Landsat 8
OLI/TIRS there were 252 images from 11 May 2013 to 6 May 2020, while for
Landsat 7 ETM+ there were 54 images to analyse covering the period from 27
January 2010 to 19 May of 2013.
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Table 1. Number of pixels for each polygon with Sentinel-1 data

Polygon name N° of pixels

PF16_1
Summerl6 1
PF19 2
CloseDatal9 2
Summerl19 2
PF19 3
CloseDatal9 3
Summerl19 3
PF19 15
Summerl19 15
PF19 16
Summerl9 16
PF19 19
Summer19 19

1294
1294
175
167
174
234
223
221
2434
2433
84
85
271
272

Polygon name
PF18 1
CloseDatal8 1
PF19 5
CloseDatal9 5
Summerl9 5
PF19 6
CloseDatal9 6
Summerl9 6
PF19 13
CloseDatal9 13
PF19 17
Summerl19 17
PF19 20
Summerl19_20

N° of pixels

1930
1929
516
518
520
580
581
580
347
351
125
123
341
338

Polygon name
PF18 2
CloseDatal8 2
PF19 8
CloseDatal9 8
PF19 10
CloseDatal9 10
PF19 11
CloseDatal9 11
PF19 12
CloseDatal9 12
PF19 18
Summerl19 18

Table 2. Number of pixels for each polygon with Landsat data

Polygon name

PF13 1
Summerl3 1
PF13 4
Summerl3 4
PF13 7
Summerl3 7
PF16_1
Summerl6 1
PF19 2
CloseDatal9 2
Summerl19 2
PF19 3
CloseDatal9 3
Summerl19 3
PF19 15
Summerl19 15
PF19 16
Summerl19 16
PF19 19
Summer19 19

N° of
pixels

31
30
1
0
21
20
108
108

00 N © © 0 0w

202
201

15
13

Polygon name

PF13 3
Summerl3 3
PF13 11
Summerl3_11
PF13 6
Summerl3 6
PF18 1
CloseDatal8 1
PF19 5
CloseDatal9 5
Summerl19 5
PF19 6
CloseDatal9 6
Summerl9 6
PF19 13
CloseDatal9 13
PF19 17
Summer19_17
PF19 20
Summer19 20

N° of
pixels

8
10
2
2
9
9
175
170

Polygon name

PF13 5
Summerl3 5
CloseDatal3 5
PF13 12
Summerl3_12
CloseDatal3 12
PF18 2
CloseDatal8 2
PF19 8
CloseDatal9 8
PF19 10
CloseDatal9 10
PF19 11
CloseDatal9 11
PF19 12
CloseDatal9 12
PF19 18
Summer19_18

N° of pixels
1519
1517
580
581
126
126
1086
1090
461
458
895
901

N° of
pixels

23
21
24
123
125

13



Data Analysis
SAR

Google Earth Engine (GEE) provides pre-processed GRD products
with 0 sigma-naught) of VV and VH polarizations, after processing for removing
thermal noise, calibrating radiometry and converting b Obeta-naught to sigma-
naught using a digital elevation model (DEM). The DEM at the latitudes of the
analysed study areas used is from the Shuttle Radar Topography Mission
(SRTM) that took place in february 2000 (Farr et al., 2007). Sigma-naught is
provided in dB by transformation the backscatter value Y=102log10(X) (Small,
2011). The GEE product was further transformed to provide gamma-naught (o P
values, thus correcting for the local incidence angle with the SRTM product. This
removed the bias between ascending and descending orbits that was evident
from plotting the data (Figure 4).

VH VH A% w
GEE Sigma-naught Terrain Corrected Gamma-naught GEE Sigma-naught Terraln Corrected Gamma-naught

|0uod L 91dd

OrbitPass
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~—— DESCENDING

gen I20g6n '209&1 '20ge7n IZOQ& ‘ZOQQW IZozogen IZOgen IZDgen I2[)géh 'zogex lzogen ‘ZOZOgen IZOQQV IZ(XJQW 'ZOQGWW éogen I20(\191 '2020gen '20géﬂ IZOgev 20gén 20gén 20dén I2020
Date

Fig 4. Before and after terrain correction.

The backscatter values can be considered a signal to analyse to detect a
significant difference over noise. Noise can be assumed to be the natural
variation of backscatter over multiple detections. Over each area, 5 percentiles
were extracted using GEE map/reduce methods. It can be noted that it is
important to remove outliers; outliers and null values can be from areas falling at
the border of an image, even if falling inside the image footprint, such as Figure
5. Falling inside the footprint will include the image/area pair to be used in the
map/reduce process, but will produce either null values or very low values that
must be removed.

Satellte

Fig 5. Location of a polygon inside the image footprint

The values extracted by map/reduce were five percentiles Pn = {P10, P25,
P50, P75, P90}. These were available for both VV and VH polarizations. The
following combinations were also used:
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IPr1 = ¢ o

IPr2 = (» o
NSRpn = ————— 1)
RATIOpn = —
DIFFpn = GV O

Where: Pn is n'" percentile and n = {10™25%,50".75% 90™"}; NSR is Normalized
Signal Ratio; IPrl and IPr2 are Inter Percentile ranges respectively between the
251 - 75" and the 10™ - 90t ranges.

A total of 29 variables were tested and the explanation for each one of
them is presented on Table 3.

Table 3. 29 variables used to analyse SAR data
Name of Variables Explanation

VH_p10; VH_p25; VH p50; VH_p75; VH polarization over the percentiles taken
VH_p90 directly from the Sentinel-1 dataset in GEE

Inter-percentile ranges over VH

VHRange_p75p25; VHRange_p90p10 polarization

VV polarization over the five percentiles
taken directly from the Sentinel-1 dataset
in GEE

VV_p10; VV_p25; VVW_p50; VV_p75;
VV_p90

VVdiwH_p10; VVdiwH_p25;
VVdiWH_p50; VVdiwWH_p75; RATIO over the five percentiles
VVdiwH_p90

VVminusVH_p10; VVminusVH_p25;
VVminusVH_p50; VVminusVH_p75; DIFF over the five percentiles
VVminusVH_p90

VVnormDiffVH_p10; VVnormDiffVH_p25;
VVnormDiffVH_p50; VVnormDiffVH_p75; NSR over the five percentiles
VVnormDiffVH_p90

) Inter-percentile ranges over VV
VVRange p75p25; VVRange p90p10 polarization
To choose which variables gave the best results, this study used a method
of rating the variables as fiyesi or
a fire event, without giving a false positive response. This method was used in
order to select one or even a few best variables that would be compared to the

15

=)}

=1}



spectral indices afterwards, since the comparison of all variables with the spectral
indices would be an overwelming analyses.
The Smoothed Z-score algorithm (Brakel, 2016) used to analyse the data
aims at detecting backscatter values that significantly change with respect to
Anor mal o values. It can be assumed that, pr
over time, backscatter values provide a normally distributed population with a
certain average and standard deviation. In the discussion section it is argued that
this means the applicability of the method must account for snow and rainfall that
change the properties of the surface and thus can provide false positives.
The detection algorthmusesaZ-scor e cal cul ated wusing t|
and standard deviati on (ploh sizoN/frem valaes movi ng
preceding value to be tested. The Z-score of the tested value (Y) is calculated

asZx= —— wherep=B® . If Z is above a certain threshold, then the

backscatter value can be considered significantly different from past values. In
this work we used a threshold of 3, to achieve a confidence level of 99% or
betterl. This algorithm is used in several applications ranging from detecting
acceleration (Esnaola-Gonzalez et al., 2020) to identifying anomalous ribosome
footprint (Perkins & Heber, 2018).

Spectral Indices

In this part of the study, the Enhanced Thematic Mapper Plus -
ETM+/Landsat 7 was used for collecting data from 2010 and 2013, while the
Operational Land Imager - OLI/Landsat 8 images were used from 2013 to 2020.
The ETM+ scenes were used only for prescribed fires and wildfires that took place
in 2013. That was needed in order to take the average of at least two years prior
to the fire event.

The calculated spectral indices were the Normalized Burn Ratio (NBR)
(Eqg. 2) and the Normalized Difference Vegetation Index (NDVI) (Eg. 3), since
they are the most common indices to evaluate fire severity (Escuin et al., 2008;
Mallinis et al., 2018)

NBR=— (2)

NDVI = ——— (3)

Where: NIR - near infrared (ETM+: 4; OLI: 5); SWIR T short wave infrared (ETM+:
7; OLI: 7).

The NDVI and NBR values vary from 11 't
vegetative activity, and values close to zero and negatives indicate little or no
chlorophyll activity (Chuvieco et al., 2002).
The spectral indices values of each scene were extracted for 10, 25, 50,
75 and 90 percentiles of pixels of each burned area, then the boxplots
representative of the distribution of these values were plotted, following the same
methodology used by (dos Santos, Romeiro, de Assis, Torres, & Gleriani, 2018),
in order to see the duration of burn scar on the landscape and be able to check if
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the treatments (prescribed fires, winter/autumn wildfires and summer wildfires)
have the same regeneration time.

After having the plots for Sentinel-1 data and the plots for NDVI and NBR,
the comparison between them was made in order to check if SAR gives the right
response for a fire event. The summarized work methodology is presented on
Figure 6.

Burned
Areas
(Prescribed

Fires and
Wildfires)

Landsat Sentinel 1

!

Terrain Corrected
NDVI NBR Gamma Naught

Smoothed Z-score l

| Multitemporal Analysis | Algorithm

|

IPrl, IPr2, NSR,
RATIO and DIFF

Plots per Area
(29 variables)

NDVI and NBR
Plots per Area

1 ¢

Duration of
Scar Burn

Comparison

Fig 6. Summarized work methodology
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Results
NDVI

Ontable4,the fAmean before fireo was created
values from all prior data to the fire, meaning that if in the past there was a fire in
that same polygon, then this piece of data and its recovery period was not

i ncluded in the data toTlce efamien itrhwem farfetaenr bfe
created using the minimum value of the 50" percentile (i.e. the median), after the

fire event, and it takes into account all pixels inside each area. The 50" percentile

was chosen due its fewer sensibility to outerliers (e.g. unburned parts). The fAday s

for recoveryo wer e 60 peccantiavalecdfthe irssdgagofon t he

fire until the day when the 50" percentile value reachesthei mean bef ore f i
Finally, the difference between Minimum and Mean (fMin i Meand was used to
define the severity of the fire in that area.

Table 4. Data for each polygon used in NDVI analyses

Block Polygon Days for Day of Mean. SD Before Minimqm (Min i
recovery recovery Before Fire Fire After Fire
Winter/Autumn Winter/Autumn18_1 160 '2-Apr-19' 0.628 0.086 0.260 0.368
Winter/Autumn Winter/Autumn18_2 263 '14-Jul-19' 0.672 0.054 0.182 0.490
Winter/Autumn Winter/Autumn19_11 96 '5-Jun-19' 0.724 0.053 0.267 0.457
Winter/Autumn Winter/Autumn19_12 80 '21-Jun-19' 0.651 0.066 0.353 0.298
Winter/Autumn Winter/Autumn19_13 73 '5-Jun-19' 0.671 0.080 0.427 0.244
Winter/Autumn Winter/Autumn19_6 55 '27-May-19' 0.659 0.112 0.410 0.249
Winter/Autumn Winter/Autumn19_8 119 '28-Jun-19' 0.753 0.056 0.321 0.432
PF PF13_1 72 '27-Jun-13' 0.610 0.064 0.354 0.256
PF PF13 12 401 7-Jun-14' 0.554 0.057 0.339 0.215
PF PF13 7 64 '27-Jun-13' 0.570 0.073 0.363 0.207
PF PF16_1 208 '30-May-17' 0.712 0.075 0.335 0.377
PF PF18_1 N/A 0.681 0.065 0.275 0.406
PF PF18_2 23 '3-Jan-19' 0.657 0.082 0.470 0.187
PF PF19 11 327 '5-Dec-19' 0.611 0.056 0.303 0.308
PF PF19 12 144 '24-Aug-19' 0.705 0.070 0.389 0.316
PF PF19 13 128 '28-Jun-19' 0.657 0.045 0.393 0.264
PF PF19_15 N/A 0.698 0.059 0.355 0.343
PF PF19 18 N/A 0.739 0.041 0.418 0.321
PF PF19_6 9 '1-Mar-19' 0.683 0.052 0.603 0.080
PF PF19_8 153 '5-Jun-19' 0.574 0.061 0.384 0.190
Summer Summerl3 1 231 '13-May-14' 0.539 0.085 0.140 0.399
Summer Summerl3_12 256 '13-May-14' 0.588 0.085 0.239 0.349
Summer Summerl3_7 128 '29-Dec-13' 0.613 0.068 0.168 0.445
Summer Summerl6_1 112 '5-Dec-16' 0.674 0.072 0.279 0.395
Summer Summer19_15 N/A 0.741 0.045 0.236 0.505
Summer Summer19_18 160 '10-Mar-20' 0.659 0.096 0.294 0.365
Summer Summerl9_6 N/A 0.649 0.065 0.250 0.399

Where: PF means Prescribed Fires; N/A means the polygon has not recovered from the fire until
the last day of analysis (26/03/2020).

As reported in Figure 8, for the duration of burn scar, the wildfires that took
place during winter/autumn took an average of 121 days to recover from the fire,
while the wildfires that happen in summer took an average of 177 days and the
prescribed fires had an average of 152 days to recover. The number of days to
recover from the fire for all three treatments (winter/autumn wildfires, summer
wildfires and prescribed fires) were considered equal by the Tukey test (p < 0.05).
The box-plots for each area are presented in Appendix 3.
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Oneway Analysis of Days for vegetation recovery By Block
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0.05 0.05
Analysis of Variance Comparisons for all pairs using
Tukey-Kramer HSD
Source DF Ssc:JuIZrZs S'\:(jz:e F Ratio | Prob > F Level Mean
Block 2 9717 4859 0475  0.629 Summer A 177
Error 19 194355 10229 PF A 153
C. Total 21 204072 Winter/Autumn A 121

Fig 8. Summary of the statistical analysis for numbers of days to recover from fire using
NDVI

As discussed before, NDVI and NBR are often used to assess the severity
of wildfires, and the greater the difference (pre- and post-fire), the greater the
severity. As shown in Figure 9, for the difference between pre-fire and post-fire
responses of NDVI, the winter/autumn wildfires, the summer wildfires and the
prescribed fires had an average pre- and post-fire difference of 0.362, 0.408 and
0.266, respectively. The winter/autumn wildfires are considered, by the Tukey
test, as not having significantly different severity from the prescribed fires. On the
other hand, severity of summer wildfires differs significantly from severity of
prescribed fires, while also being similar to winter/autumn wildfires.

Oneway Analysis of Days for vegetation recovery By Block
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0.05

Tukey-Kramer
0.05

Analysis of Variance Comparisons for all pairs using

Tukey-Kramer HSD

Source DF Siuun;er S’\gizre F Ratio | Prob > F Level Mean
Block 2 0102 0051 6961 0.0041* Summer A 0.408
Error 24 0175 0.007 Winter/Autumn A B 0.362
C. Total 26 0.277 PF B 0.267

Fig 9. Summary of the statistical analysis for severity of fire, using NDVI.
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NBR

On table 5, all the variables were created using the previously explained

methodology, but this time taking into account the NBR values.

Table 5. Data for each polygon used in NBR analyses

Block

Winter/Autumn
Winter/Autumn
Winter/Autumn
Winter/Autumn
Winter/Autumn
Winter/Autumn
Winter/Autumn
PF

PF

PF

PF

PF

PF

PF

PF

PF

PF

PF

PF

PF

Summer
Summer
Summer
Summer
Summer
Summer
Summer

Polygon

Winter/Autumn18_1
Winter/Autumn18_2
Winter/Autumn19 11
Winter/Autumn19_12
Winter/Autumn19_13
Winter/Autumn19_6
Winter/Autumn19_8
PF13 1

PF13_12

PF13 7

PF16_1

PF18 1

PF18 2

PF19 11

PF19 12

PF19_13

PF19_15

PF19_18

PF19 6

PF19 8
Summer13_1
Summerl3 12
Summerl3_7
Summerl6 1
Summer19_15
Summer19_18
Summer19 6

Days for
recovery

167
560
135

64
87

392
152
64
247

432

144

153
272
265
423
272

Day of Mean
recovery Before Fire
'9-Apr-19' 0.374
6-May-20' 0.486
'14-Jul-19' 0.520

N/A 0.425
'27-May-19' 0.439
'28-Jun-19' 0.508

N/A 0.581
'13-May-14' 0.437

'1-Oct-13' 0.336
'27-Jun-13' 0.350
'8-Jul-17" 0.534

N/A 0.494

N/A 0.511
'19-Mar-20' 0.390

N/A 0.518

14-Jul-19' 0.435
N/A 0.513
N/A 0.582
'1-Mar-19' 0.517
'5-Jun-19' 0.302
'7-Jun-14' 0.382
'22-May-14' 0.341
'20-Oct-14' 0.482
'14-May-17" 0.484

N/A 0.565

N/A 0.416

N/A 0.429

Fire
0.156
0.068
0.082
0.082
0.140
0.098
0.061
0.083
0.127
0.154
0.079
0.066
0.061
0.071
0.075
0.063
0.068
0.051
0.074
0.086
0.079
0.147
0.083
0.078
0.062
0.165
0.091

SD Before Minimum
After Fire

-0.178
-0.381
-0.28
-0.299
0.019
-0.143
-0.322
-0.158
-0.205
-0.125
-0.225
-0.167
0.185
-0.206
-0.196
-0.027
-0.075
0.053
0.417
-0.097
-0.294
-0.432
-0.433
-0.123
-0.202
-0.307
-0.365

0.552
0.867
0.800
0.724
0.420
0.651
0.903
0.595
0.541
0.475
0.759
0.661
0.326
0.596
0.714
0.462
0.588
0.529
0.100
0.399
0.676
0.773
0.915
0.607
0.767
0.723
0.794

(Min - Mean)

Where: PF means Prescribed Fires; N/A means the polygon has not recovered from the fire until
the last day of analysis (26/03/2020).

As reported in Figure 10, for the duration of burn scar by NBR, the
winter/autumn wildfires had an average of 202 days to recover from the fire, while
the summer wildfires had an average of 308 days and the prescribed fires had an

average of 199 days to recover from the burning. The number of days to recover

from the fire for all three treatments were considered equal by the Tukey test (p

< 0.05).
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Oneway Analysis of Days for vegetation recovery By Block
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Tukey-Kramer HSD
Source DF Sum of Mean F Ratio | Prob > F Level Mean
Squares | Square Summer A 308
Block 2 35411 17706 0.731  0.499 .
Error 14 339328 24238 Winter/Autumn - A 203
C. Total 16 374739 PF A 199

Fig 10. Summary of the statistical analysis for numbers of days to recover from fire
using NBR

For Figure 11, the difference between pre-fire and post-fire responses for
winter/autumn wildfires, summer wildfires and prescribed fires had an average of
0.702, 0.751 and 0.519, respectively. The winter/autumn wildfires are considered
by the Tukey test of similar severity when compared to the prescribed fires. On
the other hand, severity of summer wildfires is significantly different from severity
of prescribed fires, while also being similar to winter/autumn wildfires. Specially,
the areas with the lower fire severity were Prescribed Fire 2019 8 (PF19 _8),
Prescribed Fire 2019_ 6 (PF 19_6) and Prescribed Fire 2018_2 (PF 18_2).

Oneway Analysis of Days for vegetation recovery By Block
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Block 2 0299 0150 5.945 0.0080* i
Error 24 0604 0025 Winter/Autumn A B 0.702
C. Total 26  0.904 PF B 0.519

Fig 11. Summary of the statistical analysis for fire severity, using NBR.
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SAR

The images in Appendix 1 show an example from one area over the 29
different variables - green line is the averaged line over past 30 values, the black
line is the values and the grey area is the standard deviation. The red points are
all signals considered as significantly different from past signal. This was defined
using the Z-score of each value calculated using the mean and standard deviation
of the past 30 values; a Z-score above 3 was defined as significantly different.

For the 29 variables, when analysed by visual interpretation without
comparing them with spectral indices, the variable that gave the best results (p =
0.0028) was VVnormDiffVH_p90 (NSR percentile 90), being able to detect fire
events 19 times out of the 39 areas (48% of correct responses) i without false
positive and false negative responses. VVnormDiffVH_p75, VV_p50, VV_p9o0,
VV_p75, VV_p25, VV_p90, VH_p50, VVdivWH_p75 and VVdivVH_p90 were also
considered as good (p< 0.0001), with an average of 14.6 times as correct
responses to fire. The variables with the most (p< 0.0001) wrong responses to
fires were VHRange p75p25, VHRange p90p10, VVRange p75p25,
VVRange_p90p10, with an average of only 3.25 times of right responses to fires.

SAR and spectral indices comparison

For this part of the study, only the NSR percentile 90 was used, in an
attempt to make the comparison easier. Also, only areas with NDVI and NBR
data and SAR data were used (20 in total). That was needed because Sentinel-
1 A was only launched in 2014, therefore all areas that burned in 2013 could not
be analysed by SAR.

The NBR and NDVI plots were adapted to look more similar to the SAR
plots and to also make the visual interpretation more direct. For that reason, the
plots now are presented with the mean value before fire and its standard deviation
in green. The grey region is the percentile 10 and 90 for the black line represents
the percentile 50. The red line indicates the fire event that was the focus of
comparison and the red dotted line, that is shown in some plots, indicates a fire
that was identified by the spectral indices and confirmed by the official data from
the Institute for Nature Conservation and Forests (ICFN).

In some cases, it is possible to see that even though the spectral indices
behave like there was a fire occurrence (e.g. Summer Wildfire 2019 18, Winter
Wildfire 2018 1), there is no indication of a fire T with the red dotted line 1
because according to the official data from ICFN, there was no fire on that day.

In Figure 12 there is a sample of two comparisons where Sentinel-1
worked properly, another one where SAR responded wrongly and a third one
where it is possible to observe that the spectral indices dropped to negative
values where in theory a fire would not have happened, and SAR had the same
behaviour in this case.

The full set of plots are presented in Appendix 2 and when both NSR
percentile 90 and the spectral indices are compared, the rating of correct
responses for SAR improve considerably, since SAR responded accordingly to

NBR 19 out of 20 times (95% of correct responses)i bei ng t he APrescr.i

19 6@&only dne that substantially differed from NBR and NDVI values, and
also one of the areas with lower fire severity.
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Figure 12. SAR and spectral indices comparison. Upper image is an example of
SAR NSR percentile 90 working perfectly in accordance to the fire event. Bottom
right image is where SAR and the spectral indices dropped their values. Bottom
left image shows SAR identifying fires inappropriately.
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