
 

 
 
 
 

 
 

Estimation of carbon fluxes from eddy covariance data and 
satellite-derived vegetation indices in a karst grassland 

(Podgorski Kras, Slovenia) 
 

 

Koffi Dodji Noumonvi 

 

Dissertation to obtain a Master’s Degree in  

Mediterranean Forestry and Natural Resources Management 

(MEDfOR) 

 
 
 
Supervisors: Dr. Sofia Cerasoli (Centro de Estudos Florestais) 

                       Dr. Mitja Ferlan (Slovenian Forestry Institute) 

 
 
 
Jury: 
President: - Doutor Pedro César Ochôa de Carvalho, Professor Auxiliar do Instituto Superior 
de Agronomia da Universidade de Lisboa. 
 
Members: - Doutor João Manuel das Neves Silva, Investigador Integrado da Fundação para 

a Ciência e aTecnologia; 
  - Doutora Sofia Cerasoli, Investigadora. 
 

 
 

2018                            



2 
 

 

 

 

Acknowledgements 

First of all, I would like to thank God for helping me throughout this important step in my life. 

I would like to express my sincere gratitude to Sofia Cerasoli and Mitja Ferlan for their very 

good supervision and support all the way. I thank them for contributing greatly to reach this 

quality of the dissertation. 

I am also very thankful to the president of jury Prof. Pedro Ochôa and the jury member João 

Silva for their assessment of the document, and their valuable comments. 

I am really grateful to the MEDfOR commission and the Education, Audiovisual and Culture 

Executive Agency (EACEA) of the European Union for this opportunity to study in some top 

universities in Europe. 

Finally, I would like to thank my family and friends for their unfailing support so that whenever 

I felt down, I had someone to turn to. 

 



3 
 

Abstract 

The Eddy covariance method is a widespread method used for measuring carbon fluxes between the 

atmosphere and the ecosystem. It provides a high temporal resolution of measurements, but it is 

restricted to an area around the tower called footprint, and other methods are usually used in combination 

with eddy covariance data in order to estimate carbon fluxes for larger areas. Spectral vegetation indices 

derived from increasingly available satellite data can be combined with eddy covariance data to estimate 

carbon fluxes outside of the tower footprint. Following that approach, the present study attempted to 

model carbon fluxes for a karst grassland in Slovenia. Three types of model were considered: (1) a linear 

relationship between NEE or GPP and each vegetation index, (2) a linear relationship between GPP and 

the product of a vegetation index with PAR, and (3) a simplified LUE model assuming a constant LUE. 

We compared the performance of several vegetation indices from two sources (Landsat and SPOT-

Vegetation) as predictors of NEE and GPP, based on three accuracy metrics (R², RMSE and AIC). Two 

types of aggregation of flux data were explored, midday average fluxes and daily average fluxes. The 

Vapor Pressure Deficit was used to separate the growing season in two phases, a greening phase and a 

dry phase, which were considered separately in the modelling process, in addition to the growing season 

as a whole. The results showed that NDVI was the best predictor of GPP and NEE during the greening 

phase, whereas water related vegetation indices, namely LSWI and MNDWI were the best predictors 

during the dry phase, both for midday and daily aggregates. Model type 1 (linear relationship) was found 

to be the best in many cases. The best regression equations obtained were used to illustrate the mapping 

of GPP and NEE for the study area. 

Keywords: Eddy covariance, carbon flux, GPP, NEE, Vegetation indices. 
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Resumo 

O método micrometeorológico da covariância turbulenta é o método líder para medir as trocas de 

carbono entre a atmosfera e a biosfera. Apesar da alta resolução temporal destas medições, a área de 

influência é restrita ao redor da torre onde as medições são efectuadas. Os Índices de vegetação 

espectrais podem ser combinados com dados de covariância turbulenta para extender a estimativa dos 

fluxos de carbono para além da área de influencia da torre. Seguindo essa abordagem, o presente estudo 

tentou modelar os fluxos de carbono para uma pastagem cársica na Eslovênia. Três tipos de modelos 

foram considerados: (1) uma relação linear entre a Produtividade Primaria Liquida (PPL) ou a 

Produtividade Primária Bruta (PPB) e cada índice de vegetação, (2) uma relação linear entre PPB e o 

produto de um índice de vegetação com a radiação fotossinteticamente ativa e (3) um modelo 

simplificado de eficiência de uso de luz (EUL) no qual a EUL foi assumido como sendo constante. 

Comparamos o desempenho de vários índices de vegetação de duas fontes como preditores de PPL e 

PPB, com base em três métricas de exatidão (R², RMSE e AIC). Dois tipos de agregação de dados de 

fluxo foram explorados, a média dos fluxos por volta do meio dia solar e a média diária. O Défice de 

Pressão de Vapor foi utilizado para separar duas fases, ao longo do ano, uma fase de crescimento e uma 

fase de stress estival, que foram consideradas separadamente no processo de modelação. Os resultados 

mostraram que o NDVI foi o melhor preditor de PPB e PPL durante a fase de crescimento, enquanto os 

índices de vegetação relacionados com o conteúdo hidrico, LSWI e MNDWI foram os melhores 

preditores durante a fase de stress estival, tanto para o meio-dia como para os agregados diários. O 

modelo 1 foi o melhor em muitos casos. As melhores equações de regressão obtidas foram utilizadas 

para ilustrar o mapeamento de PPB e PPL para a área de estudo. 

Palavras-chave: Método micrometeorológico da covariância turbulenta, Fluxo de carbono, PPB, PPL, 

Índices de vegetação. 
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Resumo alargado  

As pastagens são um dos tipos de vegetação mais difundidos em todo o mundo. O fato de poderem atuar 

como fonte de carbono durante os eventos de seca levou a um fraco reconhecimento de seu papel no 

ciclo global de carbono. No entanto, as pastagens desempenham um papel considerável neste ciclo, uma 

vez que armazenam uma quantidade importante de carbono nos seus solos. Portanto, é importante 

estudar o sequestro de carbono nas pastagens e perceber de que maneira estas podem contribuir para 

mitigar os efeitos das mudanças climáticas. O método micrometeorológico da covariância turbulenta 

(eddy covariance)  é a técnica líder mundial para medição das trocas de CO2, H2O e energia entre a 

biosfera e a atmosfera. O método tem a vantagem de realizar medições diretas de diferentes gáses com 

alta precisão e detalhes. A fim de monitorizar os fluxos de CO2 e H2O em pastagens , uma torre para a 

medição de fluxos pelo método da covariância turbulenta foi instalada na regiaõ de Podgorski Kras 

desde 2008, fornecendo medições da Produtividade Primaria Liquida (PPL) e da evapotranspiração. 

Apesar da alta resolução temporal destas medições, a área de medição  é restrita a uma área de influência 

ao redor da torre, com um alcance de cerca 200m. 

Os índices de vegetação espectral derivados de dados de satélite podem ser combinados com dados 

obtidos por meio da covariância turbulenta, para estimar os fluxos de carbono para além da area de 

influencia da torre. Diferentes tipos de modelos matemáticos existem para este fim. Estes são baseados 

no conceito simples, mas eficaz, de eficiência de uso de luz (EUL) de Monteith, que está enraizado na 

forte relação existente entre a Produtividade Primária Bruta (PPB) e a radiação fotossinteticamente ativa 

(RFA) absorvida pela vegetação. No entanto, esse tipo de modelo mostrou-se frequentemente limitado, 

devido à dificuldade em determinar alguns de seus parâmetros. Como alternativa, alguns estudos 

estimaram PPB ou PPL por meio de regressão linear, adotando índices espectrais de vegetação como 

variáveis explicativas. 

Reunindo dados de covariância turbulenta e índices de vegetação, o presente estudo tentou modelar 

fluxos de carbono para a pastagem Cársico Eslovena. Três tipos de modelos foram considerados: (1) 

uma relação linear entre PPL ou PPB e cada índice de vegetação, (2) uma relação linear entre PPB e o 

produto de um índice de vegetação com RFA e (3) um modelo simplificado de eficiência de uso de luz 

no qual EUL foi assumido como sendo constante. Comparamos o desempenho de vários índices de 

vegetação de duas fontes (Landsat e SPOT-Vegetation) como preditores de PPL e PPB, com base em 

três métricas de exatidão (R², RMSE e AIC). Dois tipos de agregação de dados de fluxo foram 

explorados, a média dos fluxos por volta do meio dia solar e a média diária. O Déficit de Pressão de 

Vapor foi utilizado para separar duas fases, ao longo do ano, uma fase de crescimento e uma fase de 

stress estival, que foram consideradas separadamente  no processo de modelação. Os resultados foram 

comparados com as regressões obtidas considerando uma única estação de crescimento. 

Os resultados mostraram que o NDVI foi o melhor preditor de PPB e PPL durante a fase de crescimento, 

enquanto os índices de vegetação relacionados com o conteúdo hidrico, LSWI e MNDWI foram os 
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melhores preditores durante a fase de stress estival, tanto para o meio-dia como para os agregados 

diários. Embora os resultados das duas fontes de índices de vegetação não pudessem ser comparados, 

observamos que os R² obtidos a partir dos NDVIs (NDVI da SPOT-Vegetation) foram geralmente 

menores do que o R² obtido a partir dos índices de vegetação derivados de Landsat. No geral, os fluxos 

médios do meio-dia estavam mais correlacionados com os índices de vegetação do que os fluxos médios 

diários. Isto deve-se a uma menor flutuação nos fluxos médios do meio-dia devido à reduzida escala de 

tempo considerada. O modelo tipo 1 (relação linear entre fluxos e índices de vegetação) foi o melhor 

em muitos casos, confirmando o fato de que a radiação fotossinteticamente ativa absorvida (RFAA) pela 

vegtação, ou seja a área foliar explica a maior parte da variabilidade de PPB em um ecossistema 

caracterizado por uma marcada sazonalidade como pastagens e culturas agrícolas anuais. As melhores 

equações de regressão obtidas foram utilizadas para ilustrar o mapeamento de PPB e PPL para a área de 

estudo. Mapas de fluxos de carbono ajudam a avaliar sua variabilidade espacial e temporal. O índice 

NDVI, independentemente do satellite utilizado,  mostrou na maioria dos casos distribuições similares, 

com diferenças causadas principalmente pela diferença na resolução espacial. 

Uma das principais limitações deste estudo é o fato de que não houve validação dos melhores modelos 

selecionados devido a uma quantidade limitada de dados disponiveis. Além disso, o fato de obter 

melhores resultados separando o ciclo anual em duas fases climáticas sugere que o uso dos resultados 

em grandes áreas vai necessitar de dados climáticos para o calculo de VPD (por exemplo, de estações 

meteorológica). A adoção de regressões empíricas restringe a utilidade dos modelos para áreas com 

condições semelhantes. Recomendações para pesquisas futuras seriam a validação dos modelos, assim 

que os dados estivessem disponíveis. As imagens do Landsat 7 também podem ser exploradas para usar 

todos os dados de covariância turbulenta disponíveis antes de 2014. 

Palavras-chave: Método micrometeorológico da covariância turbulenta, Fluxo de carbono, PPB, PPL, 

Índices de vegetação. 



7 
 

Table of content 

Acknowledgements ................................................................................................................................. 2 

Abstract ................................................................................................................................................... 3 

Resumo alargado ..................................................................................................................................... 5 

List of Figures ......................................................................................................................................... 8 

List of Abbreviations ............................................................................................................................... 9 

1.  Introduction ...................................................................................................................................... 10 

2. State of the art.................................................................................................................................... 11 

2.1. Principle of the eddy covariance method ................................................................................... 11 

2.2. Carbon fluxes estimates integrating remote sensing data ........................................................... 13 

3. Materials and Methods ...................................................................................................................... 14 

3.1. Study area ................................................................................................................................... 14 

3.2. Data acquisition .......................................................................................................................... 16 

3.2.1. Eddy Covariance and meteorological data .......................................................................... 16 

3.2.2. Spectral vegetation indices .................................................................................................. 17 

3.3. Data analysis............................................................................................................................... 18 

4. Results ............................................................................................................................................... 19 

4.1. Carbon fluxes and environmental variables ............................................................................... 19 

4.2. Vegetation indices ...................................................................................................................... 21 

4.3. Correlation charts of fluxes and vegetation indices.................................................................... 22 

4.4. Comparison of the different models ........................................................................................... 24 

4.5. Flux maps using the best models ................................................................................................ 27 

5. Discussion ......................................................................................................................................... 28 

6. Conclusion ......................................................................................................................................... 30 

References: ............................................................................................................................................ 32 

 



8 
 

List of Figures 

Figure 1: Schematic representation of eddy covariance principles. ...................................................... 12 

Figure 2: Study area, a karst grassland .................................................................................................. 16 

Figure 3: Thirty minutes averages of carbon fluxes, VPD, Tair, Rg and total daily precipitation recorded 

between 2014 and 2017 in the karst grassland. ..................................................................................... 20 

Figure 4: Temporal profile of vegetation indices calculated in this study (see Table 2). Different symbols 

represent different years. ....................................................................................................................... 21 

Figure 6: Maps of average midday and daily GPP and NEE estimates for the periods 15/05/2017 to 

19/05/2017 (for Landsat) and 11/05/2017 to 20/05/2017 (for SPOT), using the best models obtained for 

the greening phase ................................................................................................................................. 27 

Figure 7: Maps of average midday and daily GPP and NEE estimates for the periods 02/07/2017 to 

06/07/2017 (for Landsat) and 01/07/2017 to 10/07/2017 (for SPOT), using the best models obtained for 

the dry phase .......................................................................................................................................... 28 

 

List of Tables 

Table 1: Spectral range of Landsat and SPOT-Vegetation bands ......................................................... 17 

Table 2: Vegetation indices adopted for this study ............................................................................... 18 

Table 3: GPP~VIs and NEE~VIs regression accuracy metrics (R², RMSE, AIC) obtained using only 

midday fluxes. ....................................................................................................................................... 25 

Table 4: GPP~VIs and NEE~VIs regression accuracy metrics (R², RMSE, AIC) obtained using daily 

fluxes. .................................................................................................................................................... 26 

Table 5: Best models selection based on accuracy metrics ................................................................... 27 

 

 



9 
 

List of Abbreviations 

AIC: Akaike Information Criterion 

APAR: Absorbed Photosynthetically Active Radiation 

EC: Eddy Covariance 

EVI: Enhanced Vegetation Index 

fAPAR: Fraction of Absorbed Photosynthetically Active Radiation 

GNDVI: Green Normalized Difference Vegetation Index  

GPP: Gross Primary Productivity 

LSWI: Land Surface Water Index 

LUE: Light Use Efficiency 

LUEmax: Maximum Light Use Efficiency 

MNDWI: Modified Normalized Difference Water Index 

NDSVI: Normalized Difference Senescent Vegetation Index 

NDVI: Normalized Difference Vegetation Index 

NDVIs: Normalized Difference Vegetation Index from SPOT-Vegetation mission 

NEE: Net Ecosystem Exchange 

P: Precipitation 

r: Pearson Correlation Coefficient 

R²: Coefficient of determination  

Reco: Respiration of the Ecosystem 

RMSE: Root Mean Square Error 

SAVI: Soil Adjusted Vegetation Index 

SWC: Soil Water Content 

Tair: Air Temperature 

VI: Vegetation Index 

VPD: Vapor Pressure Deficit 



10 
 

1.  Introduction 

Grasslands are one of the most widespread vegetation types worldwide, covering between 14 and 26% 

of the earth surface (Mason and Zanner, 2005; Scurlock and Hall, 1998). Moreover, they are increasing 

in area recently due to the abandonment of former agriculture lands in some parts of the world. In fact, 

the transformation of the agricultural context has released many areas from use in Europe, and such 

areas would naturally undergo succession (Benjamin et al., 2005) from grasslands to shrublands and 

forests. 

In Slovenia, abandoned agriculture lands in the karst region are known to go through some successional 

stages such as grasslands and woody ecosystems (Ferlan et al., 2016; Kaligarič et al., 2006). Each 

succession stage has a different carbon balance. In fact, while forests are known to act as a sink 

accumulating carbon in their woody biomass (Ferlan et al., 2016; Pan et al., 2011; Post and Kwon, 

2000), grasslands may act as a source of carbon (Ferlan et al., 2011) particularly in periods of drought 

when the lack of precipitation can decrease photosynthetic carbon uptake (Arnone III et al., 2008; 

Gilmanov et al., 2007; Meyers, 2001), or as a consequence of other disturbances (e.g. fire events). This 

led to a poor recognition of the role of grassland ecosystems in the global carbon cycle (Hall et al., 1995; 

Hall and Scurlock, 1991). However, grasslands play a tremendous role as they stock an important 

amount of carbon in their soils, estimated at 23% of the global soil carbon (Buringh, 1984). Given this 

fact, it is important to study the extent of carbon sequestration in grasslands and understand how they 

contribute in mitigating the effects of climate change. 

The Eddy Covariance (EC) method permits to measure, at ecosystem scale, the atmosphere-ecosystem  

exchange of water, energy and CO2 fluxes (Papale et al., 2006). The method consists of measurements 

of the net exchange of gases between the atmosphere and the ecosystem above the canopy where 

turbulence can be considered more or less constant (Ferlan, 2013). It has been used for the first time in 

the 1970s (Baldocchi et al., 1988; Desjardins, 1974) and since then has been widely employed in 

different ecosystem types around the world (Baldocchi, 2008; Ferlan et al., 2011, 2016; Haszpra et al., 

2005; Y.-L. Li et al., 2008; Peichl et al., 2012; Ruimy et al., 1995; Saigusa et al., 2002; Yan et al., 2015; 

Yao et al., 2018). The eddy covariance method provides a reliable direct measurement of different gas 

compounds together with meteorological variables, at high temporal detail, permitting to ascertain the 

influence of climate drivers or other disturbances on ecosystem fluxes (Burba and Anderson, 2010). 

The eddy covariance measurements represent fluxes in an area around the tower (named footprint), the 

size and shape of which depend on the set-up of the equipment, the structure and height of the canopy 

and varies with prevalent wind direction and speed. Usually, the footprint extends over a distance 

ranging from tens of meters to more than 1km from the tower (Göckede et al., 2008). In the Slovenian 

karst grassland, footprint analyses showed that the mean distance from the tower is about 195 m (Ferlan, 

2013). This spatial limitation raises the necessity to find a way to estimate carbon fluxes outside the 
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footprint of the eddy covariance tower, since it would be costly and unfeasible to install towers to cover 

all areas of interest. 

NEE is the result of the balance between two components, the respiration of the ecosystem (Reco) and 

the Gross Primary Productivity (GPP), which represents the amount of carbon fixed through 

photosynthesis. A possible approach to estimate GPP outside the limits of the footprint of an eddy 

covariance tower is the use of remotely sensed information. In fact, optical data such as satellite images 

can be applied to estimate carbon fluxes by establishing relationships between remotely sensed 

information and fluxes in order to extrapolate GPP outside the boundaries of a tower footprint. 

Reflectance values obtained from remote platforms in specific wavelengths are generally employed to 

calculate normalized differences to obtain spectral vegetation indices (VIs). 

Light-Use Efficiency models are the most frequently applied to estimate GPP from vegetation indices 

(VIs) remotely retrieved (Nestola et al., 2016). Besides LUE models, empirical models based on the 

relationship observed between VIs and GPP are also frequently applied (Gilmanov et al., 2005; 

Zhengquan Li et al., 2007; Nestola et al., 2016; Rossini et al., 2012). In addition, since photosynthesis 

(GPP) and respiration (Reco) are generally positively correlated (Baldocchi, 2008; Baldocchi et al., 2015; 

Ma et al., 2016), it is often possible to infer both NEE and GPP from remote sensing products.  

The general objective of this study is to estimate NEE and GPP for a karst grassland in the Podgorski 

Kras plateau by combining both eddy covariance and satellite data in order to provide a basis for large-

scale monitoring of the carbon balance in the Podgorski karst grassland. 

In order to reach that objective, this study aims to: 

i) Evaluate the ability of different VIs retrieved from remote sensing platforms to represent GPP and 

NEE trends in a karst grassland, 

ii) Compare the performance of different models, integrating VIs in the estimation of GPP and NEE, 

iii) Apply obtained results to map NEE and GPP for a grassland area in the Podgorski Kras Plateau. 

2. State of the art 

2.1. Principle of the eddy covariance method 

Airflow consists of numerous eddies. The general principle of eddy covariance measurements can be 

understood as the covariance between the concentration of interest and vertical wind speed in the eddies 

(Burba and Anderson, 2010). Put simpler, it consists of measuring how many particles of a component 

of interest are moving up and down over time and how fast they are (Ferlan, 2013). The horizontal 

airflow over an investigated area is composed of numerous rotating eddies that can be represented at a 

single point on the tower by the Figure 1. At a given moment (time 1), eddy 1 moves air parcel c1 

downward with the speed w1. At the same point, the next moment (time 2), eddy 2 moves air parcel c2 

upward with speed w2. Given that each air parcel has its own characteristics i.e. gas concentration, 
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temperature, humidity, etc., if these characteristics and the speed of vertical air movement are measured, 

the vertical upward or downward fluxes can be known (Burba and Anderson, 2010). 

 

Figure 1: Schematic representation of eddy covariance principles. Source (Burba and Anderson, 

2010) 

The eddy covariance method has the advantage of performing direct measurements for different types 

of gas (CO2, H2O, CH4, etc.), with high precision and detail (Burba and Anderson, 2010). However, 

there are some problems related to the eddy covariance method. The main problem is the occurrence of 

gaps in the data, which need to be filled by statistical regressions with different methods. Gaps occur 

due to power breaks (mostly when power system is based on solar panels), damages to instruments, for 

instance, due to animals or lightning (Aubinet et al., 2012). In addition, equipment malfunctioning such 

as the anemometers that might not work during heavy precipitation events would make the eddy 

covariance system glitch during rainy periods (Ferlan, 2013). Another limitation of the method is its 

restriction to flat areas (Burba and Anderson, 2010). 

The Net ecosystem Exchange (NEE) of CO2 between the atmosphere and the biosphere measured by 

eddy covariance can be partitioned into the two components of carbon fluxes, Gross Primary 

Productivity (GPP) and ecosystem respiration (Reco) (Lasslop, Reichstein, Papale, et al., 2010; 

Reichstein et al., 2005). GPP refers to the total amount of carbon fixed in the process of photosynthesis 

by plants in an ecosystem; Reco is the amount of carbon lost by autotrophic and heterotrophic respiration. 

NEE refers to the balance between GPP and carbon losses due to ecosystem respiration (Aubinet et al., 

2012; Kirschbaum et al., 2001) as in the equation (1) hereafter. 

NEE = GPP + Reco  (1) 

Where NEE is the Net Ecosystem Exchange, GPP is the Gross Primary Productivity and Reco is the 

Ecosystem Respiration. We adopted in this study the atmospheric sign convention where a flux toward 

the surface (carbon uptake, i.e. GPP) is negative whereas a flux upward the atmosphere (carbon release, 

i.e. Reco) is positive (Baldocchi, 2008; Lasslop, Reichstein, Detto, et al., 2010). Consequently, a negative 

NEE indicates that the ecosystem is acting as a carbon sink while a positive NEE indicates that the 

ecosystem is acting as a source of carbon. 
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2.2. Carbon fluxes estimates integrating remote sensing data 

With the increasing availability of spatial data thanks to technological progress (Lillesand et al., 2004), 

their integration into GPP models raised considerably (Mäkelä et al., 2007). LUE models are the most 

widely used models for integrating carbon fluxes and optical measurements (Lees et al., 2018; Nestola 

et al., 2016), thanks to the ease of applicability, with the possibility to retrieve indirectly all variables 

(Bagnara et al., 2018). 

LUE models can be expressed in a general form as follows (Yuan et al., 2014): 

GPP = PAR * fAPAR * LUEmax * M   (2) 

Where PAR is the incident photosynthetically active radiation (MJ m-2); fAPAR is the fraction of 

absorbed photosynthetically active radiation; LUEmax is the potential LUE (g C m-2 MJ-1 APAR) under 

ideal environmental conditions; and M is a modifier that depends on environmental conditions, and 

constrains LUEmax to its actual value. 

One main limitation of LUE models is related to the LUEmax term in the models. It is expressed as a 

biome-specific constant in most of the models (Goerner et al., 2011; Rossini et al., 2012). 

In grasslands, APAR can be assumed to explain most of the variability in GPP (Lobell et al., 2003) and 

therefore LUE (LUEmax*M in equation 1) is generally considered constant (Nestola et al., 2016). 

However, considering LUE as a constant leads often to errors in the estimate of GPP. In their study, 

Nestola et al. (2016) obtained better results splitting the analysis in two parts (greening and senescence 

phases) along the growing season. By doing so, and considering a different LUE for each of the 2 

periods, carbon fluxes were more accurately estimated.  

Ground cover and leaf area are significant variables that determine absorption of PAR by the canopy. 

Thanks to the empirical relation that exists between fAPAR and vegetation indices (Running et al., 2004; 

Yuan et al., 2014), the latter are used in many studies as proxy of carbon fluxes (Nestola et al., 2016; 

Yan et al., 2015; Y. Zhou et al., 2014). In fact, given the robust relationship between fAPAR and Leaf 

Area Index (X. Zhou et al., 2002), the fAPAR can be determined based on vegetation indices derived 

from remote observations of surface spectral reflectance (Myneni and Williams, 1994). 

Despite the increasingly available panoply of vegetation indices, their use for estimating fAPAR has 

been limited to one or two (Y. Zhou et al., 2014). Some of the most widely used indices include NDVI 

and EVI (Yan et al., 2015; Y. Zhou et al., 2014). In fact, NDVI and fAPAR increase with ground cover 

and plant leaf area, and their good relationship made it possible to estimate fAPAR from NDVI in many 

studies (Myneni and Williams, 1994). Nestola et al. (2016) confirmed the effectiveness of NDVI as a 

metrics of green biomass, making it a useful parameter in a simple expression of the LUE model for a 

grassland ecosystem. 
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Despite NDVI being a good metrics of green vegetation, it is quite sensitive to background reflectance 

and tends to saturate at high leaf area. In such conditions, EVI could be employed as an alternative to 

NDVI because it is less sensitive to these limitations (Rocha and Shaver, 2009). 

Other vegetation indices similar to NDVI and EVI could also be explored. For instance, by using the 

Green instead of the Red band for the calculation of NDVI, the Green NDVI (GNDVI) is more sensitive 

to chlorophyll content in plants than NDVI (Gitelson et al., 1996). The Soil Adjusted Vegetation index 

(SAVI) is modified from NDVI by including a soil-adjustment factor (Jovanović et al., 2016).  

To overcome the main limitation of LUE models (difficulties in the estimation of the LUE term of the 

models), some authors attempted to estimate NEE or GPP through linear regression, considering 

vegetation indices as independent variables (Nestola et al., 2016; Rossini et al., 2012). 

In these empirical models, other satellite-derived indices not only related with fAPAR can be explored, 

for example vegetation indices known to be able to depict surface water content. These indices include 

the Normalized Difference Senescent Vegetation Index (NDSVI), the Land Surface Water Index 

(LSWI) and the Modified Normalized Difference Water Index (MNDWI) (Hill, 2013; John et al., 2008; 

Yan et al., 2015). Water-related vegetation indices can be very good indicators of plant activity in 

summer when other vegetation indices could be stationary due to some greenness of the plants despite 

the very low photosynthetic activity. In fact, they are more sensitive to drought than greenness related 

vegetation indices (Bajgain et al., 2015). 

While vegetation indices, and NDVI in particular, proved in many cases to be effective in approximating 

GPP through the fAPAR component in a LUE model (Myneni and Williams, 1994; Nestola et al., 2016), 

they are less correlated with ecosystem respiration making Reco usually the most important source of 

uncertainty in NEE estimation through remote sensing (Yan et al., 2015). Moreover, ecosystem 

respiration is the sum of heterotrophic (microbes, soil fauna) and autotrophic (plant roots) respiration 

(Bond-Lamberty et al., 2004; Hanson et al., 2000), which would make its estimation more difficult in 

some complex ecosystems involving important contribution of heterotrophic respiration. However in 

some cases it was possible to estimate NEE adopting models integrating remote sensing products (e.g. 

Nestola et al. 2016). 

3. Materials and Methods 

3.1. Study area 

The present study was conducted in the Podgorski Kras plateau located in the sub-mediterranean region 

of south-west Slovenia. The area underwent major human influences, due to its position at the transition 

between the Mediterranean and central Europe. In fact, agricultural practices such as overgrazing in the 

past centuries led to a pronounced destruction of the vegetation cover, causing severe soil erosion and 

resulting into a stony and bare landscape. However, thanks to the economic development causing the 
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near-abandonment of agriculture practices in the area, a succession is taking place and we can observe 

in the plateau different vegetation types ranging from grasslands to secondary oak forests (Ferlan, 2013). 

The bedrock is mainly composed of limestone from Paleocene and Eocene (Knez et al., 2015). The 

chemical weathering known as karst phenomena led to the formation of Leptosols and Cambisols, which 

represent insoluble fractions of carbonates. As a result, the soil is superficial, with depths ranging from 

0 cm to several decimeters in soil pockets between rocks. The organic matter represents about 12-15% 

of the topsoil (Ferlan, 2013). 

The climate of the area is transient between mediterranean and continental. It is more humid than a 

typical Mediterranean climate, with less pronounced dry period in summer and colder winter. It is often 

referred to as sub-mediterranean climate, with a mean annual temperature of 10.5°C, a mean daily 

temperature of 1.8°C and 19.9°C in January and June respectively, and an average annual precipitation 

around 1370 mm. Climate statistics represent 30 years average (1971-2000) of four meteorological 

stations in the sub-mediterranean region (EARS, 2018). Winters are windy (Bora wind), with a periodic 

snow cover. The growing season ranges from March or April to October (Ferlan, 2013). 

This study was limited to a homogenous area of grassland (Figure 2), where only herbaceous species 

are present with the exception of few shrubs. The most abundant grassland species are Bromopsis erecta 

(Huds.) Fourr., Carex humilis Leyss., Stipa eriocaulis Borb., Centaurea rupestris L., Potentilla 

tommasiniana F.W. Schultz, Anthyllis vulneraria L., Galium corrudifolium Vill. and Teucrium 

montanum L. 

In order to monitor CO2 and H2O fluxes between extensive grassland and atmosphere, an eddy 

covariance tower was installed at the position indicated in Figure 2 (13°55’27.714”E; 45°33’2.858”N) 

since 2008 (Ferlan et al., 2011), providing measurements of carbon Net Ecosystem Exchange (NEE) 

and evapotranspiration between the atmosphere and  grassland ecosystem. 
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Figure 2: Study area, a karst grassland 

3.2. Data acquisition 

3.2.1. Eddy Covariance and meteorological data 

Apart from an eddy covariance system, a weather station was also installed on the grassland since July 

2008. The eddy covariance system consists of an open path infrared gas (CO2 and H2O) analyzer (LI-

7500, Li-Cor, Lincoln, NE USA) and a sonic anemometer (USA-1, Metek GmbH, Elmshorn, Germany) 

installed at 2 m height. Flux data were recorded at 20 Hz and then averaged on a half-hourly step. The 

weather station provides measurements of environmental variables such as soil temperature, soil water 

content, incident radiation, incident and reflected photosynthetic flux density, net radiation, air 

temperature, humidity, soil heat flux and precipitation. All measurements of environmental variables 

were done at 0.1 Hz and then averaged half-hourly (Ferlan et al., 2011). 

Air temperature and global radiation data were gapfilled based on data from a meteorological station 

located in Koper (at a distance of 15 Km from the tower). NEE data were partitioned into GPP and Reco 

according to Lasslop et al. (2010) using daytime data-based estimates, considering temperature 

sensitivity of respiration and VPD limitation of GPP. 
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3.2.2. Spectral vegetation indices 

In this study, two sources of data were considered. The 300m resolution NDVI data, consisting of 10 

days aggregates of NDVI, provided by the SPOT-Vegetation mission and available for the whole world 

since 2014 were downloaded from Copernicus global land service portal (CGLSP, 2017). Landsat 8 

Operational Land Imager (OLI) images (30m resolution) were downloaded from the portal of the United 

States Geological Survey (USGS, 2018) for the growing season (March to October) from 2014 to 2017. 

Landsat 8 images have a temporal resolution of 16 days. However, cloud cover rendered most of them 

useless (Saranya, 2014; Sun et al., 2017) in our study. Therefore, selected images included all available 

images with no or insignificant cloud cover in the footprint of the tower. Contrarily to SPOT-Vegetation 

NDVI data, Landsat images represent single date images. The Table 1 presents the different bands of 

Landsat 8 and those of SPOT-Vegetation satellite. 

Once downloaded, the Landsat images underwent a radiometric calibration to convert radiance values 

to Top of Atmosphere reflectance, followed by an atmospheric correction through Dark Object 

Subtraction in order to remove atmospheric components such as scattering and absorption of solar 

energy in the atmosphere and obtain Top of Canopy reflectance (Chavez, 1996). The image processing 

was conducted with the ENVI 5.1 software. 

Table 1: Spectral range of Landsat and SPOT-Vegetation bands 

Name Landsat range (µm) SPOT-Vegetation range (µm) 

Ultra Blue (coastal/aerosol) Band 1 (0.435 – 0.451) – 

Blue Band 2 (0.452 – 0.512) Band 1 (0.430 – 0.470) 

Green Band 3 (0.533 – 0.590) – 

Red Band 4 (0.636 – 0.673) Band 2 (0.610 – 0.680) 

Near Infrared (NIR) Band 5 (0.851 – 0.879) Band 3 (0.790 – 0.890) 

Shortwave Infrared (SWIR) 1 Band 6 (1.566 – 1.651) Band 4 (1.580 – 1.750) 

Shortwave Infrared (SWIR) 2 Band 7 (2.107 – 2.294) – 

Panchromatic Band 8 (0.503 – 0.676) – 

Cirrus Band 9 (1.363 – 1.384) – 

Thermal Infrared (TIRS) 1 Band 10 (10.60 – 11.19 – 

Thermal Infrared (TIRS) 2 Band 11 (11.50 – 12.51) – 

The corrected images were used to compute a variety of vegetation indices (Table 2), namely the 

Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index 

(GNDVI), the Enhanced Vegetation Index (EVI), the Land Surface Water Index (LSWI), the Modified 

Normalized Difference Water Index (MNDWI), the Soil Adjusted Vegetation Index (SAVI), and the 

Normalized Difference Senescent Vegetation Index (NDSVI). 

For NDVI data from the SPOT-Vegetation mission (NDVIs) (directly downloaded from the Copernicus 

global land service portal) and all vegetation indices computed from Landsat images (Table 2), an 
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average value was computed for the pixels in the footprint (Figure 2) using the Raster package in R 

software.  

Table 2: Vegetation indices adopted for this study 

Satellite Index                       Formula Reference 

SPOT NDVIs NDVIs = (b3 – b2) / (b2 + b3) Rouse et al. (1974) 

 
L8 NDVI NDVI = (b5 – b4) / (b5 + b4) Rouse et al. (1974) 

L8 GNDVI GNDVI = (b5 - b3) / (b5 + b3) Gitelson et al. (1996) 

L8 EVI EVI = (2.5 * (b5 – b4)) / (b5 + 6*b4 – 7.5*b2 + 1) Huete et al. (2002) 

L8 NDSVI NDSVI = (b6 – b4) / (b6 + b4) John et al. (2008) 

L8 SAVI SAVI = ((1 + L)(b5 – b4)) / (b5 + b4 + L) Huete (1988) 

L8 LSWI LSWI = (b5 - b6) / (b5 + b6) Xiao et al. (2005) 

L8 MNDWI MNDWI = (b3 – b6) / (b3 + b6) Xu (2006) 

 

 

L is a constant dependent on the vegetation cover and takes values from 0 (for very green vegetation) to 1 (areas 

with no green vegetation), assumed 0.5 here. 

Despite the availability of flux data since 2008, only a timeframe of four years was considered in order 

to match the timeframe of the remote sensing information used in this study. 

3.3. Data analysis 

In this study, we considered two types of aggregation of flux data. The first type of aggregation consisted 

of midday average of half-hourly fluxes between 11 am and 4 pm as in Nestola et al. (2016). The second 

type of aggregation consisted of daily average of half-hourly fluxes. For further analysis, midday or 

daily flux data were subsequently grouped at different time steps. For NDVIs data, midday or daily flux 

data were subsequently averaged over 10 days period to match temporal aggregation provided by SPOT-

Vegetation. For VIs derived from Landsat 8 images, midday or daily flux data were subsequently 

averaged over 5 days (4 days prior to the date of each image) since a preliminary test showed a better 

correlation if aggregated fluxes were considered instead of fluxes of the overpass day only. 

Three types of model after Rossini et al. (2012) were tested in this study: 

i) Model 1 assuming a direct linear relationship between GPP or NEE and a vegetation index 

NEE or GPP = a*VI + b   (3) 

ii) Model 2 assuming a direct linear relationship between GPP and the product of a vegetation index and 

PAR 

 GPP = a*(VI*PAR) + b   (4) 

iii) Model 3, a LUE model assuming a constant LUE and fAPAR estimated as a linear function of a 

vegetation index 

GPP = (a*VI+b)*PAR   (5) 

All models were tested for the entire growing season (single) or splitting the growing season in two 

phases (green and dry). The separation of the growing season was based on preliminary tests during 

which we plotted GPP or NEE as a function of VIs and tried a separation based on months. The months 

of June, July and August allowed a visual identification of a different group. However, the separation 
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was not perfect and different values of midday aggregates of Tair and VPD (averaged over 10 days for 

SPOT-Vegetation NDVIs and 5 days for Landsat VIs) were tried instead of months. VPD proved to be 

the best for separating the growing season into 2 phases, with a threshold of 1500 Pa. We defined the 

greening phase as the period of the growing season with midday average VPD less than or equal to 1500 

Pa, and the dry phase as the period of the growing season with midday average VPD greater than 1500 

Pa. 

In order to compare the performance of the models obtained from the different regressions, three 

accuracy metrics were computed, namely the coefficient of determination (R²), the Root Mean Square 

Error (RMSE) and the Akaike Information Criterion (AIC). The best models are the ones with a high 

value of R² and a low value of RMSE and AIC. 

All analyses were done using the R software, version 3.4.4. 

The best models selected were used to create illustrative GPP and NEE maps of the study area for two 

dates. The choice of the dates only aimed at having one in the greening phase and another one in the dry 

phase. Image algebra was performed on a vegetation index layer based on the expression of each model. 

When required in the expression of the model, PAR was used with the proper aggregation, i.e. midday 

or daily aggregate, 10 or 5 days average, depending on which aggregate of flux is being estimated and 

which source of vegetation index is being considered (SPOT-Vegetation or Landsat 8). The maps were 

created using the ArcGIS 10.4.1 software. The resulting GPP and NEE represent average fluxes of 5 or 

10 days if estimated from Landsat derived VIs or NDVIs respectively. 

4. Results 

4.1. Carbon fluxes and environmental variables 

The Figure 3 below presents, for the period 2014-2017, fluxes (NEE, GPP, Reco) and some main 

environmental variables including vapor pressure deficit (VPD), air temperature (Tair), global radiation 

(Rg) and precipitation (P). Large gaps are noticeable for flux data and VPD, whereas Tair and Rg show 

no gaps because they were gap-filled from another meteorological station.  

GPP shows some seasonality and has two peaks during the growing season, a high peak around end of 

May or beginning of June and a low peak in October. In between the two peaks, there is a period of low 

carbon uptake translating into low GPP values in July and August. Similar trends were visible in NEE 

and Reco. In fact, a strong correlation was observed between NEE and GPP, both for midday and daily 

averages (Figure 5). 

The maximum values of VPD and Tair match the low GPP period. Global radiation however reaches its 

yearly peak earlier than VPD and Tair, somewhere between May and June. 
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Precipitation data shows no real pattern of seasonality, as the distribution over the year seems quite 

random. However, there is generally less precipitation in July and August than in any other months, in 

some years. 

 

Figure 3: Thirty minutes averages of carbon fluxes, VPD, Tair, Rg and total daily precipitation 

recorded between 2014 and 2017 in the karst grassland.  
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4.2. Vegetation indices 

The Figure 4 represents all the spectral vegetation indices used in this study. All the vegetation indices 

that represent vegetation greenness (NDVI, EVI, SAVI and GNDVI) have quite similar trends. In 

addition, NDVI from the two different sources (Landsat and SPOT-Vegetation) match quite well, with 

the difference that NDVIs has slightly higher values than NDVI. All these vegetation indices increase 

from the beginning of the growing season, to reach a peak around end of May or beginning of June. 

They start decreasing slowly for about 3 months. Around September, there is again a slight increase in 

the vegetation index. This last increase is better seen with NDVIs.  

 

Figure 4: Temporal profile of vegetation indices calculated in this study (see Table 2). Different 

symbols represent different years.  
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The year 2016 shows an unusual trend, with a very low value recorded for some vegetation indices in 

August, due to a fire that occurred at that period. This unexpected disturbance was visible in GNDVI, 

NDVI, EVI, SAVI, LSWI and MNDWI, but less visible in NDVIs and NDSVI.    

LSWI is a water-related vegetation index, but it has a trend that is similar to the greenness-related 

vegetation indices. This can be explained by the fact that vegetation greenness reflects the water content 

in plant leaves, which is detected through LSWI. MNDWI on the contrary has an overall different trend 

since it is really meant to detect water bodies (Xu, 2006), but it also shows a decrease during the months 

of June, July and August. NDSVI, which is also a water-related vegetation index, does not decrease 

during June, July and August as MNDWI. 

These observations about the vegetation indices along with the trend of fluxes and environmental 

variables suggest that the growing season can be subdivided in two phases, a greening phase (March to 

May/June and September to October) and a dry phase (June to August) when the higher Tair and VPD, 

together with a decrease in precipitation lead to a decrease in GPP. However, these two phases could 

not be clearly defined by months, since climate is quite variable from one year to another. Our 

separation, based on VPD instead of months, proved to better split the two phases of the growing season 

with the threshold of 1500 Pa. 

4.3. Correlation charts of fluxes and vegetation indices 

The Figure 5 shows a correlation matrix of fluxes (NEE and GPP) with all vegetation indices. The good 

relationship between most vegetation indices, as mentioned previously, is confirmed by the high 

correlation coefficients observed. MNDWI and NDSVI are poorly correlated with the other vegetation 

indices.  

On the correlation charts, only separate fit lines are showed in order not to make the graphs overloaded 

(left bottom of the matrix). However, correlation coefficients were computed also for the single fit 

(values in black in the matrix). Low correlation coefficients were obtained for the single fit whereas the 

consideration of the two phases of the growing season gave higher correlation coefficients. 

All the greenness-related VIs (NDVIs, NDVI, EVI, SAVI and GNDVI) and LSWI gave higher 

correlation coefficients in the greening phase compared to the dry phase for GPP (both midday and daily 

aggregates) and midday NEE. For daily NEE aggregates, those VIs except GNDVI gave a better 

correlation coefficient during the dry phase instead. MNDWI gave high correlation coefficients during 

the dry phase for GPP and NEE, both for midday and daily aggregates. NDSVI gave better correlation 

coefficients during the greening phase than the dry phase for GPP and NEE with both aggregates, but 

generally lower than correlation coefficients observed with other VIs. 
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Figure 5: Correlation charts between fluxes and vegetation indices. Values in black, blue and red represent Pearson correlation coefficients for a single fit, the 

greening phase (VPD < 1500 Pa) and the dry phase (VPD > 1500 Pa) respectively. The remark “_24” is used to distinguish daily average fluxes from midday 

average fluxes. *, **, *** indicates correlations significant at 95%, 99% and 99.9% 



24 
 

Midday average fluxes generally show a better correlation with VIs than daily averages during the 

greening phase, while the opposite was observed during the dry phase. This observation was the same 

both for GPP and NEE. The best correlation coefficients observed for midday averages during the 

greening phase could be due to less fluctuation in the midday average fluxes due to the reduced time 

scale considered and the fact that most carbon uptake occur around midday during that phase of the 

growing season. During the dry phase however, there is less carbon uptake during the day, and midday 

averages may fluctuate more depending on particular environmental conditions of every single day 

(higher temperatures of some days may lead to more respiration). Daily averages would hide those 

fluctuations, explaining why we obtained better correlations with VIs than midday averages during the 

dry phase. 

4.4. Comparison of the different models 

The Table 3 shows values of accuracy metrics for the three types of model considered in this study, for 

midday average fluxes. Similarly, Table 4 shows accuracy metrics considering daily average fluxes. The 

values of these tables directly reflect trends and correlation coefficients previously presented in Figure 

5. No exceptions were found in our study, as high values of R² corresponded always to low values of 

RMSE and AIC. The three metrics are all however useful, since slight differences can be noticed in the 

RMSE and AIC when R² is the same, and this helped in the choice of the best model. 

The VIs performed differently from one model to another, according to the phase of the growing season 

being considered and the flux aggregate being estimated. 

What was mentioned in the previous section, about a poor correlation between fluxes and vegetation 

indices with a single fit, can be confirmed by generally low values of R² or higher values of RMSE and 

AIC. The best model with a single fit considering Landsat VIs was always obtained with LSWI for NEE 

and EVI for GPP in a direct correlation (model 1), be it with midday average or daily average fluxes. 

NDVIs however gave lower R² values in all models and for both aggregations of flux data (midday and 

daily) when a single fit for the whole season was considered, and the highest R² observed was 0.43. 

Overall, separate fits gave higher R² and lower RMSE and AIC in all models compared to a single fit. 

In fact, the highest R² obtained in a single fit was 0.59 for midday fluxes and 0.62 for daily fluxes, but 

it was possible to obtain 0.85 and 0.91 during the greening phase for midday and daily aggregates 

respectively, 0.69 and 0.86 during the dry phase for midday and daily aggregates respectively. 

For the greening phase, NDVI was the best predictor of midday aggregates of GPP and NEE with all 

three model types. For daily aggregates, NDVI was the best vegetation index only in models 2 and 3 

whereas in model 1, LSWI and GNDVI were the best vegetation indices for NEE and GPP respectively. 
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For the dry phase, MNDWI was the best predictor of midday aggregates of GPP and NEE with all three 

model types. For daily aggregates, MNDWI was the best VI except in model 2 and model 1 with NEE, 

where LSWI gave the highest R². 

Midday fluxes gave higher R² than daily fluxes during the greening phase for the model type 1 (direct 

correlation). However, during the dry phase (all model types) and also the greening phase with models 

including PAR (2 and 3), daily fluxes gave higher R² than midday fluxes. 

Table 3: GPP~VIs and NEE~VIs regression accuracy metrics (R², RMSE, AIC) obtained using only 

midday fluxes. For Landsat VIs, the best regression results are highlighted for each type of model and 

for single, green and dry. For SPOT, the best regression models are highlighted for single, green and 

dry, all model types together. 

       R² RMSE(µmol m-2s-1) AIC 

Model Flux VIs  single green dry single green dry single green dry 

1 NEE NDVIs  0.36 0.59 0.62 3.34 2.51 1.72 172.83 81.40 34.40 

  NDVI  0.52 0.80 0.49 2.87 1.68 2.67 88.46 30.96 31.54 

  EVI  0.58 0.78 0.59 2.70 1.75 2.40 83.60 33.05 28.50 

  SAVI  0.48 0.79 0.55 2.99 1.73 2.51 91.71 32.52 29.76 

  GNDVI  0.29 0.78 0.03 3.52 1.76 3.68 104.77 33.32 40.49 

  LSWI  0.59 0.75 0.64 2.68 1.88 2.23 82.96 36.73 26.52 

  MNDWI  0.19 0.02 0.69 3.74 3.72 2.09 109.60 72.31 24.68 

   NDSVI  0.06 0.33 0.18 4.04 3.07 3.38 115.73 62.35 38.14 

 GPP NDVIs  0.33 0.58 0.46 3.53 2.53 2.47 180.56 82.10 54.57 

  NDVI  0.50 0.85 0.32 2.81 1.42 2.83 84.48 21.65 33.17 

  EVI  0.51 0.77 0.41 2.78 1.74 2.64 83.62 31.83 31.18 

  SAVI  0.44 0.82 0.38 2.97 1.54 2.71 88.81 25.64 31.88 

  GNDVI  0.30 0.85 0.02 3.32 1.43 3.39 97.69 22.04 38.19 

  LSWI  0.50 0.71 0.48 2.80 1.99 2.47 84.29 38.33 29.29 

  MNDWI  0.10 0.00 0.63 3.76 3.67 2.10 107.24 68.96 24.77 

    NDSVI  0.12 0.52 0.23 3.71 2.54 3.01 106.23 50.53 34.81 

2 GPP NDVIs  0.10 0.73 0.37 4.10 2.03 2.67 201.57 63.61 58.99 

  NDVI  0.19 0.81 0.19 3.56 1.61 3.10 103.07 27.92 35.66 

  EVI  0.22 0.75 0.26 3.50 1.82 2.95 101.64 33.96 34.32 

  SAVI  0.18 0.77 0.24 3.60 1.76 2.99 103.83 32.30 34.67 

  GNDVI  0.10 0.73 0.01 3.75 1.92 3.41 107.11 36.55 38.39 

  LSWI  0.48 0.74 0.47 2.85 1.89 2.51 85.64 35.71 29.76 

  MNDWI  0.03 0.22 0.61 3.90 3.25 2.13 110.15 62.90 25.21 

    NDSVI  0.01 0.55 0.13 3.94 2.45 3.20 110.92 48.83 36.53 

3 GPP NDVIs  0.11 0.73 0.45 4.45 2.07 2.49 212.88 64.97 55.10 

  NDVI  0.26 0.84 0.25 3.75 1.67 2.98 107.03 29.72 34.58 

  EVI  0.26 0.76 0.33 3.72 1.92 2.84 106.41 36.71 33.24 

  SAVI  0.18 0.77 0.31 3.92 1.90 2.87 110.48 36.03 33.52 

  GNDVI  0.11 0.80 0.01 4.10 1.81 3.46 114.01 33.80 38.73 

  LSWI  0.27 0.74 0.40 3.68 1.99 2.67 105.69 38.32 31.45 

  MNDWI  0.08 0.26 0.53 3.90 3.15 2.38 110.08 61.45 28.26 

    NDSVI  0.03 0.67 0.18 4.24 2.13 3.13 116.69 41.80 35.92 
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Table 4: GPP~VIs and NEE~VIs regression accuracy metrics (R², RMSE, AIC) obtained using daily 

fluxes. For Landsat VIs, the best regression results are highlighted for each type of model and for single, 

green and dry. For SPOT, the best regression models are highlighted for single, green and dry, all model 

types together. 

      R² RMSE (µmol m-2s-1) AIC 

Model Flux VIs single green dry single green dry single green dry 

1 NEE NDVIs 0.30 0.36 0.59 1.45 1.42 0.80 55.86 33.36 -8.48 

  NDVI 0.52 0.52 0.74 1.23 1.21 0.85 20.70 13.92 -0.61 

  EVI 0.59 0.55 0.82 1.13 1.17 0.71 13.80 12.31 -5.69 

  SAVI 0.54 0.57 0.81 1.20 1.15 0.74 18.98 11.19 -4.61 

  GNDVI 0.28 0.53 0.11 1.49 1.20 1.58 36.85 13.46 16.79 

  LSWI 0.62 0.58 0.86 1.08 1.13 0.63 10.52 10.19 -8.72 

  MNDWI 0.18 0.04 0.64 1.60 1.71 1.00 42.41 31.89 4.02 

   NDSVI 0.03 0.14 0.13 1.73 1.62 1.56 49.18 29.07 16.48 

 GPP NDVIs 0.43 0.60 0.59 1.41 1.18 0.90 51.77 17.58 -1.92 

  NDVI 0.59 0.82 0.47 1.09 0.71 1.07 11.18 -12.88 5.79 

  EVI 0.62 0.78 0.57 1.06 0.80 0.96 9.02 -7.37 2.98 

  SAVI 0.54 0.83 0.52 1.16 0.71 1.01 15.93 -13.46 4.33 

  GNDVI 0.35 0.84 0.07 1.39 0.68 1.41 30.31 -15.27 13.69 

  LSWI 0.58 0.73 0.62 1.11 0.88 0.90 12.36 -2.34 1.08 

  MNDWI 0.09 0.00 0.69 1.64 1.70 0.82 43.39 30.47 -1.55 

    NDSVI 0.16 0.46 0.17 1.57 1.25 1.34 40.27 15.28 12.15 

2 GPP NDVIs 0.19 0.78 0.52 1.67 0.87 0.98 75.59 -7.60 2.61 

  NDVI 0.30 0.85 0.32 1.43 0.66 1.21 32.78 -16.99 9.37 

  EVI 0.34 0.81 0.40 1.39 0.74 1.13 30.53 -10.95 7.52 

  SAVI 0.28 0.82 0.37 1.46 0.71 1.16 34.06 -12.92 8.14 

  GNDVI 0.17 0.78 0.05 1.56 0.79 1.43 39.57 -7.94 14.00 

  LSWI 0.57 0.76 0.61 1.13 0.83 0.92 13.47 -5.47 1.53 

  MNDWI 0.01 0.25 0.55 1.71 1.47 0.98 47.02 23.16 3.42 

    NDSVI 0.05 0.59 0.06 1.67 1.08 1.42 45.02 7.98 13.89 

3 GPP NDVIs 0.17 0.80 0.60 1.74 0.83 0.89 81.90 -11.55 -2.36 

  NDVI 0.36 0.91 0.42 1.52 0.57 1.12 37.41 -24.15 7.28 

  EVI 0.38 0.86 0.49 1.50 0.67 1.06 36.36 -15.84 5.52 

  SAVI 0.28 0.87 0.47 1.61 0.66 1.08 41.89 -17.14 6.05 

  GNDVI 0.18 0.89 0.06 1.71 0.61 1.42 46.84 -20.45 13.87 

  LSWI 0.36 0.86 0.55 1.51 0.68 0.98 36.94 -15.28 3.52 

  MNDWI 0.17 0.50 0.60 1.59 1.24 0.93 41.14 14.66 2.09 

    NDSVI 0.09 0.77 0.16 1.74 0.82 1.35 48.11 -5.65 12.36 

Based on these accuracy metrics, the best regression models are presented in Table 5, according to the 

two aggregates (midday and daily), sources of vegetation indices (Landsat and SPOT-Vegetation) and 

fluxes (GPP and NEE) for the two phases of the growing season. Direct correlation (model type 1) was 

found to be the best option for midday average fluxes, except for the estimation of GPP with NDVIs 

during the greening phase, where the model type 2 was the best. For daily averages however, the model 

type 1 performed better with NEE whereas model types 2 and 3 were the best for GPP. 

During the greening phase, the best models obtained for GPP gave higher coefficients of determination 

(R²) compared to those obtained with NEE. The opposite was observed for the dry phase. 
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Table 5: Best models selection based on accuracy metrics 

Aggregate VI source Flux Greening phase Dry phase 

Midday Landsat GPP -26.34*NDVI+4.17, R²=0.85 -64.9*MNDWI-30.7, R²=0.63 

 SPOT  -0.03*(NDVIs*PAR)-0.71, R²=0.73 -19.17*NDVIs+7.17, R²=0.46 

 Landsat NEE -26.03*NDVI+4.76, R²=0.80 -73.81*MNDWI-33.52, R²=0.69 

  SPOT   -19.35*NDVIs+3.13, R²=0.59 -18.49*NDVIs+7.75, R²=0.62 

Daily Landsat GPP (-0.044*NDVI+0.004)*PAR, R²=0.91 -29.05*MNDWI-13.93, R²=0.69 

 SPOT  (-0.033*NDVIs)*PAR, R²=0.80 (-0.028*NDVIs+0.01)*PAR, R²=0.60 

 Landsat NEE -10.72*LSWI-0.57, R²=0.58 -12.34*LSWI+0.3, R²=0.86 

  SPOT   -6.81*NDVIs+2.61, R²=0.36 -7.97*NDVIs+4.88, R²=0.59 

4.5. Flux maps using the best models 

The Figure 6 shows a map of fluxes for the study area, computed based on the equations of Table 5. The 

fluxes represent estimated average NEE and GPP for the periods 15/05/2017 to 19/05/2017 (for Landsat) 

and 11/05/2017 to 20/05/2017 (for SPOT).  Similarly, the Figure 7 shows estimated average of NEE 

and GPP for the periods 02/07/2017 to 06/07/2017 (for Landsat) and 01/07/2017 to 10/07/2017 (for 

SPOT). The dates were chosen to have an illustration for both greening and dry phases. 

 

Figure 6: Maps of average midday and daily GPP and NEE estimates for the periods 15/05/2017 to 

19/05/2017 (for Landsat) and 11/05/2017 to 20/05/2017 (for SPOT), using the best models obtained for 

the greening phase. The remark “_24” is used to distinguish daily from midday average fluxes. 

During the greening phase (Figure 6), GPP or NEE estimated from the two different sources of 

vegetation indices have similar spatial distributions. The estimates from NDVIs can be considered a 

generalization of that obtained from Landsat derived VIs. In the case of midday average fluxes, NEE 

and GPP seem to have the same distribution with differences only in their values. This is a consequence 

of the very good linear relationship that was found between midday GPP and NEE in our study. Daily 
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fluxes however show more difference between NEE and GPP, as the correlation observed was not as 

good as that of midday fluxes.  

During the dry phase (Figure 7), the spatial distribution of fluxes is quite different between flux estimates 

from the two sources of VI (Landsat and SPOT-Vegetation), with the exception of estimates of daily 

aggregates of NEE, where the estimate from NDVIs appears like a generalization of the estimate from 

LSWI. 

 

Figure 7: Maps of average midday and daily GPP and NEE estimates for the periods 02/07/2017 to 

06/07/2017 (for Landsat) and 01/07/2017 to 10/07/2017 (for SPOT), using the best models obtained for 

the dry phase. The remark “_24” is used to distinguish daily from midday average fluxes. 

A difference can be noticed between the greening and the dry phases. GPP estimates are very low during 

the dry phase, and the carbon balance (NEE estimates) became positive in some parts of the study area. 

5. Discussion 

Several climatic factors, including temperature, precipitation, solar radiation and water deficit interact 

to influence the variability observed in carbon fluxes (Griffis et al., 2000), making it difficult to separate 

their individual effects clearly (Hui et al., 2003). In our study, the low carbon uptake observed during a 

period of the year (June to August) with high VPD and Tair, and relatively lower precipitation confirmed 

that climate is a key driver of carbon fluxes. The impact of climatic drivers could be stronger in this 

karst grassland, characterized by shallow soils. In fact, in ecosystems facing drought periods (due to low 

precipitation rates and shallow soils), GPP and consequently NEE are primarily controlled by climatic 

factors such as precipitation (Ferlan et al., 2011). In addition, the fact that grasses use water intensively 

(Rodriguez-Iturbe et al., 2001) makes precipitation an important variable that affects the variability in 

carbon fluxes. 



29 
 

The separation of the growing season into two phases as in Nestola et al. (2016) proved to be useful for 

a better correlation between fluxes and vegetation indices. In our study, the threshold of 1500 Pa for 

VPD showed to be a threshold across years in spite of differences observed in precipitation.  

The good relationship between GPP and NEE (Baldocchi, 2008; Baldocchi et al., 2015; Ma et al., 2016) 

was confirmed in our study, allowing to infer both NEE and GPP from vegetation indices. 

Overall, NDVI was the best predictor for the estimation of NEE and GPP during the greening phase of 

the growing season, reinforcing the conclusion of previous studies that NDVI is an index of choice for 

depicting photosynthetic activity (Gamon et al., 1995; Myneni et al., 1995; Nestola et al., 2016) which 

translates into CO2 assimilation (GPP component of carbon fluxes). On the other hand, LSWI and 

MNDWI proved to be ideal for estimating fluxes during the dry period, confirming the fact that water-

related vegetation indices are the best indicators of photosynthetic activity during the dry season, as they 

are more sensitive to water stress than the other vegetation indices (Bajgain et al., 2015). NDSVI, which 

is also a water-related vegetation index, did not give good results for the dry phase as for LSWI and 

MNDWI. Other studies reported the low performance of NDSVI in depicting non-photosynthetic 

vegetation in a semi-arid grassland and a cropland (Zhaoqin Li and Guo, 2018; Sonmez and Slater, 

2016), which relates to the low performance observed in our study.  

Strong direct correlations were observed between fluxes and vegetation indices (model type 1) as in 

Rossini et al. (2012). This confirms that APAR (which is highly dependent on the vegetation greenness) 

explains most of the variability of GPP in an ecosystem characterized by a seasonality in greening and 

senescence such as grasslands and croplands (Gamon, 2015; Gitelson et al., 2006; Lobell et al., 2003). 

However, the fact that GNDVI did not perform well generally suggests that chlorophyll content is not 

the only factor that comes into play in this particular karst grassland, which seemed to have an important 

water stress influence during the dry phase. 

Despite the fire event that occurred in August 2016, which was easy to depict in the VIs profiles, we did 

not notice any outliers corresponding to that period in our regressions. This might be explained by the 

occurrence of the fire event towards the end of the dry phase, and the grasses recovered during the 

second part of the greening phase in September. Indeed, grasslands are known to recover quickly 

following a fire event (Keeley and Keeley, 1984). 

An interesting point about this study is that reasonable results were obtained also for daily fluxes. We 

consider daily average flux estimates more useful than midday average flux estimates in terms of 

monitoring the total productivity of an ecosystem. Even though a daily (24 hours) average flux was 

considered instead of the sum due to missing data, we considered that the average without the missing 

data represents a good proxy of the total daily flux. 
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The two sources of vegetation indices (Landsat and SPOT) could not really be compared, given that 

Landsat images were single date images whereas NDVIs is a 10 days composite data. In addition, the 

difference in the time step of aggregation of fluxes (10 days for NDVIs and 5 days for Landsat vegetation 

indices) rendered a comparison inappropriate. However, it should be noted that the highest correlation 

coefficient obtained with NDVIs is generally lower than the one obtained with Landsat vegetation 

indices. This is probably due to the greater variability in fluxes and NDVIs within the timeframe 

considered for the NDVIs data (10 days). 

The use of the regression models in our study for mapping GPP or NEE seems interesting as it helped 

to appreciate the spatial distribution of carbon fluxes. However, the spatial variability in carbon fluxes 

only depended on the spatial variability of the vegetation indices. The obtained models should therefore 

be used only in homogenous environmental conditions. 

During drought periods, an ecosystem can quickly shift from carbon sink to source (Lei et al., 2016). 

The difference observed in the maps of NEE between the greening and the dry phases illustrates this 

fact, since NEE values became positive during the dry phase, demonstrating the importance of 

comparing maps of the same area over time. 

In the approach adopted in this study, VPD values from the eddy covariance tower are still needed to 

identify the greening and dry phases for a given date. This need of VPD in order to choose which model 

to apply could hinder the applicability over large areas where VPD values may change significantly. 

The possibility to retrieve VPD from meteorological stations could be explored in that case. 

Another limitation of our study is the fact that there was no validation of the regression models. This is 

due the limited number of Landsat 8 images available along with missing flux data, not permitting to 

spare some data for validation. However, we consider that the model selection based on the good 

correlations observed and the regression accuracy metrics was robust enough and indicative of the utility 

of empirical regressions.  

6. Conclusion 

This study was particularly interesting, as it investigated the ability of several vegetation indices from 

two different remote sources in estimating carbon fluxes. It was equally compelling because it was 

conducted in a karst grassland, which is a particular ecosystem due to the rocky nature of the bedrock, 

and its relatively shallow soils. 

The eddy covariance method represents a suitable method for measuring gas fluxes, which is widely 

used to assess and monitor the atmosphere-ecosystem carbon exchange. The fact that its measurements 

are limited to a relatively small footprint was addressed in this study, by attempting to estimate GPP and 

NEE for a homogenous area larger than the tower footprint. GPP showed some patterns of seasonality 

with two peaks, one at the end of May and another in October. In between the two peaks, a period of 
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low GPP was identified, which we later called dry phase while the rest of the growing season was 

referred to as greening phase. VPD was used to distinguish between the two phases, with the threshold 

of 1500 Pa above which begins the dry phase. Spectral vegetation indices from two sources (Landsat 

and SPOT-Vegetation) were explored, to test their ability as predictors in the estimation of NEE and 

GPP. 

 The main results of our study are the followings: 

 A strong relationship was found between most of the vegetation indices and also between NEE and 

GPP, explaining the comparable performance of some of the regression models. 

 NDVI proved to be the best predictor of GPP and NEE during the greening phase as the carbon 

uptake during that phase is mostly explained by changes in the green biomass in the plants. For the 

dry phase however, water-related vegetation indices such as LSWI and MNDWI were the best 

predictors of GPP and NEE, since they are more sensitive to drought. 

 Good results were obtained not only for midday but also for daily (24 hours) fluxes, which is 

interesting since they could be more useful in terms of monitoring the carbon balance of an 

ecosystem, instead of considering only midday fluxes. 

 Model type 1 (direct correlation between fluxes and vegetation indices) was the best for estimating 

midday average fluxes (GPP and NEE) and daily average of NEE whereas the models types 2 (direct 

correlation between fluxes and the product of PAR and vegetation indices) and 3 (simplified LUE 

model) were the best for daily average GPP. 

 The maps of GPP and NEE could help appreciate spatial and temporal variability of fluxes. The two 

sources of NDVI data gave similar maps, in most of the cases. In those cases, the maps derived from 

NDVIs appeared as a generalization of maps derived from Landsat NDVI due to a lower spatial 

resolution of SPOT-Vegetation data. Following the spatial detail, the range of GPP and NEE values 

in the maps derived from Landsat is wider than the range of GPP and NEE derived from SPOT-

Vegetation. 

The results of this study seemed quite interesting, and the best regression models could be used for 

estimating carbon fluxes outside of the eddy covariance tower. Suggestions for further studies would be 

the validation of the models once more data would be available. The availability of Sentinel 2 images 

could also be considered. Alternatively, Landsat 7 images could be explored in order to use all the 

available eddy covariance data prior to 2014.
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