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Abstract 

Mushrooms are one of the most important non-wood forest products in the Mediterranean Basin. They 

provide a wide variety of ecosystem services, including a contribution to the sustainability of forest 

ecosystems and global carbon cycle. Moreover, wild edible species possess a strong socio-economic 

significance. 

Climate appears to be the most important factor determining mushroom productivity. Climate change 

models predict drier and hotter conditions for the Mediterranean, raising the concern about the long-

term provision of mushroom ecosystem services, because of the expected reduction of water availability 

in the soil as a result of decreased precipitation and increased evapotranspiration. 

Soil moisture is assumed to be an important micro-climatic variable affecting mushroom productivity 

since it integrates climate, site variables and forest stand characteristics. With the aim to increase our 

understanding of the interaction between climate and micro-climate, and their relative role in 

determining mushroom occurrence and productivity, we used a long-term yield data-base from 28 

permanent mushroom inventory plots established in 2008 in Pinus pinaster stands under coastal 

Mediterranean climate. Mushrooms were collected on a weekly basis during the autumn fruiting season 

and classified as total, edible and marketed mushrooms. A process-based soil water balance model was 

used to reconstruct soil moisture values to complement field observations. Mixed-effect two-stage 

models employing monthly climate and micro-climate (soil moisture) variables were fitted to mushroom 

occurrence and productivity data. 

We found that mushroom production in the Mediterranean was primarily dependent on weather 

conditions during the same month, with the exception of precipitation, whose effects were found to 

exhibit a delay of one-month. Temperature had both positive and negative effects, with high 

temperatures limiting production at the beginning of the fruiting season and low temperatures limiting 

it at the end. Although climate-based models had better predictive power than micro-climate-based 

models, the latter allowed more profound insight into the processes of mushroom fruiting. 

 

 

1. Introduction  

Many organisms in terrestrial ecosystems are dependent on fungal communities. Indeed, mushrooms 

play a critical role in the sustainability of forest ecosystems and global carbon cycle (Büntgen et al., 

2012; Mohan et al., 2014; Stokland et al., 2012). In particular, mycorrhizal fungi facilitate the access of 

plants to water and nutrients and saprotrophic fungi are key contributors to carbon and nutrient cycles. 

In addition, mushroom fruit bodies comprise an important part of the diet of many animal species 

(Boddy and Jones, 2008; Krebs et al., 2008) including humans.  

Wild edible mushrooms are one of the most important non-wood forest products in the Mediterranean 

Basin (de Román and Boa, 2006; Martínez-Peña et al., 2012), where non-wood forest products is of 
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particular socio-economic importance (Croitoru and Merlo, 2005; Croitoru, 2007). In many cases, the 

value of fungal-based ecosystem services have higher economic potential than timber-oriented forestry 

(Palahí et al., 2009; Pettenella and Secco, 2006). For example, in Spain, the collection and trade of wild 

edible mushrooms is of significant recreational and socio-economic importance, contributing to the 

economy of many rural communities (Bonet et al., 2014; De Frutos Madrazo et al., 2012; Martínez de 

Aragón et al., 2011; Voces et al., 2012).  

Mushroom yield varies dramatically between years due to the variation in the environmental factors 

that determine the duration of fruiting season and the frequency of emergence (Boddy et al., 2014; 

Moore et al., 2008). Climate appears to be the foremost important environmental factor (Boddy et al., 

2014; Bonet et al., 2012; Büntgen et al., 2012; Taye et al., 2016), with precipitation and temperature 

having major impact on mushroom phenology (Büntgen et al., 2015; Kauserud et al., 2012, 2008; Moore 

et al., 2008), yield (Bonet et al., 2012, 2010; Büntgen et al., 2015; Krebs et al., 2008; Ogaya and 

Peñuelas, 2005) and diversity (Bonet et al., 2010; Hernández-Rodríguez et al., 2015; Salerni et al., 2002) 

Moreover, the interaction between both variables also has significant effects. For example, recent 

trends of temperature increase in humid temperate regions has been found to correlate with an 

increased yield and earlier mushroom emergence, while a decreased and delayed production have been 

observed under drier Mediterranean conditions (Boddy et al., 2014). 

The future drier and hotter conditions predicted by climate change models for the Mediterranean 

region (Allen et al., 2014) and the expected reduction in water availability and soil moisture will likely 

enhance drought stress in the forests (Gracia et al., 2002; Peñuelas et al., 2004), eventually affecting 

negatively mushroom productivity (Ágreda et al., 2015; Büntgen et al., 2015; Ogaya and Peñuelas, 

2005). Therefore, the ecological and socio-economic importance of mushrooms requires a better 

understanding of the climatic drivers of mushroom production in order to ensure and forecast the 

provision of fungal-based ecosystem services, especially under the context of climate change. 

Mushroom productivity is largely determined by the combination of climate, site and soil variables and 

forest stand characteristics (Bonet et al., 2010, 2008; De-Miguel et al., 2014). Since these three factors 

determine micro-climatic conditions, micro-climatic variability may be considered an integrative factor 

to explain the stochasticity and spatial unevenness of observed mushroom fruiting patterns. Moreover, 

mushroom production models considering climate variables solely may fail to capture the actual water 

availability in the soil as they ignore soil water fluxes, especially those driven by evapotranspiration 

demands (Ágreda et al., 2015). Nevertheless, long series of micro-climatic records in mushroom 

monitoring plots are scarce, thus most studies on mushroom productivity are usually lacking such 

measurements (Boddy et al., 2014), constituting a major drawback to our understanding of productivity 

patterns.. 

Models aiming at incorporating mushroom production for multi-objective management planning are in 

short supply, negatively affected by the lack of long-term monitoring of mushroom yield, especially in 

drought-prone environments such as the Mediterranean (Mohan et al., 2014). Nevertheless, the 

ecological and socio-economic importance of mushrooms in the Mediterranean basin, together with the 

current and further expected decline in productivity, makes it necessary to better understand the 



3 
 

interaction between climatic and micro-climatic variables, and how they influence mushroom 

occurrence and productivity.  

In this study, we aim at shading light on the climatic and micro-climatic conditions driving mushroom 

emergence (i.e., probability of occurrence) and mushroom productivity (i.e., yield) under typical 

Mediterranean conditions. Moreover, we intend to better understand the relationship between climate 

and micro-climate variables. Analysis was done for three mushroom categories so as to include several 

fungal-based ecosystem services; total mushrooms to deduce on the ecosystem functioning (i.e., 

regulating and supporting services), and edible and marketed mushrooms to deduce on food prevalence 

and socio-economic activity (i.e., provisioning and cultural).  We address these issues using data from a 

network of mushroom productivity plots in North-East Spain, and we focus on soil moisture as a key 

component of micro-climatic conditions. We hypothesize that soil moisture is an important micro-

climatic variable affecting mushroom productivity because it integrates climate, site and soil variables 

and forest stand characteristics  (Barroetaveña et al., 2008; Martínez de Aragón et al., 2007; Ogaya and 

Peñuelas, 2005). In order to have temporal series of soil moisture of the same length as mushroom yield 

data, we complemented measured soil moisture values with predictions obtained using a process-based 

water balance model. We coupled the output, and other climatic variables, with empirical mushroom 

occurrence and productivity models, in order to estimate the effects of climate and micro-climate 

conditions on the provisioning of the aforementioned fungal-based ecosystem services. 

 

 

2. Materials and Method 

2.1 Study area and forest plots 

The study area is located in the Natural Park of Poblet in Catalonia, North-East Spain (41° 21’ 6.4728 

latitude and 1° 2’ 25.7496 longitude).  The area is characterized by a coastal Mediterranean climate, 

with average annual temperature of 11.8°C, annual rainfall of 665.5 mm and a pronounced summer 

drought usually lasting for 3 months, extending from mid-June to mid-September (Ogaya et al., 2015). 

The study area contains a set of 28 permanent plots in Pinus pinaster stands of ages around 50 years. 

Plots are 100 m2 (10 m x 10 m) in size and were established in 2008 and 2009. They strongly differ in 

stand structure, including tree density (446-2657 trees ha-1) and basal area (20.9-81.7 m2 ha-1), but they 

also differ in elevation (594-1013 m.a.s.l), slope (2-13%) and aspect. Soil is siliceous and has franc-sandy 

texture. All trees were inventoried and measured for diameter at 1.3 m breast height (DBH).  

2.2 Mushroom productivity sampling 

In each plot, all mushrooms were collected on a weekly basis during the autumn fruiting season, 

stretching over four months from September to December between 2008 and 2015, with the majority of 

the yield being concentrated in October and November. Mushrooms were species-identified, counted 

and weighted (wet and dry weight) in the laboratory. Classifications of the total annual yield were 
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established according to edibility and marketability categories (Table 1). Edible mushrooms represent 

87% of total mushrooms, and marketed mushrooms represent 43% and 50% of total and edible 

mushroom production, respectively. Marketed mushrooms consist of only seven species, 80% percent of 

the wet weight being accounted for by Lactarius spp. and 13% by Macrolepiota procera.  

 

Table 1. Number of species, total annual yield and the proportion of the most abundant genera and species, calculated out of 

the total, edible and marketed mushrooms classification. 

 Total Edible Marketed 

Total number of species 364 119 7 

Total annual yield (kg ha-1 yr-1) 2278 1976 978 

Dominant species (%) Lactarius spp. 34 Lactarius spp. 39 Lactarius spp. 79 
Macrolepiota procera 13 

 

 

Table 2. Summary of the main data used. 

Model Variables Mean SD Minimum Maximum 
Total mushroom yield (kg ha-1 yr-1) 86.37 102.17 0.01 481.61 
Edible mushroom yield (kg ha-1 yr-1) 74.92 97.79 0.00 459.45 

Marketed mushroom yield (kg ha-1 yr-1) 37.09 72.63 0.00 452.24 
Total mushroom occurrence (probability) 1.00 0.00 1.00 1.00 
Edible mushroom occurrence (probability) 0.94 0.24 0.00 1.00 
Marketed mushroom occurrence (probability) 0.70 0.46 0.00 1.00 
August precipitation (mm) 12.45 10.92 0.00 35.28 
September precipitation (mm) 49.42 32.92 0.21 111.73 

October precipitation (mm) 58.13 62.39 6.88 235.37 

November precipitation (mm) 101.43 74.52 0.28 208.06 

September number of rainy days (days) 7.92 4.54 1.00 14.00 
October number of rainy days (days) 8.00 3.36 4.00 14.00 

November number of rainy days (days) 9.47 5.80 2.00 25.00 
November average temperature (°C) 8.53 1.86 3.98 11.96 

December average temperature (°C) 5.09 1.59 1.08 7.80 

September average maximum temperature (°C) 22.33 2.90 15.37 27.71 
October average maximum temperature (°C) 17.77 2.22 12.23 21.83 
November average minimum temperature (°C) 4.14 1.73 0.83 7.32 

December average minimum temperature (°C) 0.71 1.29 -2.68 3.03 
September average relative humidity (%) 67.02 4.18 59.32 76.24 

September average maximum relative humidity (%) 95.72 2.28 90.23 98.85 

September soil moisture (% of field capacity) 0.48 0.12 0.24 0.81 
October soil moisture (% of field capacity) 0.60 0.19 0.24 0.93 
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2.3 Climatic variables and soil moisture sampling 

Plot-specific daily weather variables were interpolated from Spanish meteorological weather stations 

(2008-2011), and from both Catalan and Spanish stations (2012-2015) following the daymet 

methodology (Thornton and Running, 1999; Thornton et al., 2000). Precipitation, temperature (min, max 

and mean) and relative humidity (min, max and mean) were estimated in each plot averaging the values 

of several meteorological stations with weighting factors that depended on the geographic proximity to 

the target plot. Furthermore, the estimate from each meteorological station was corrected for 

differences in elevation between the station and the target plot. The high dependence of precipitation 

on local topography (e.g., altitude, aspect) and the distance from weather stations might result in false-

predictions of rain events that have not reached the plot, or miss-predictions of rain events which 

occurred locally at the plot but did not reach the weather stations. This limitation affected not only the 

estimated probability of occurrence for rain, but also the intensity of rain events.  

Volumetric soil content below-ground was measured using Decagon 5 TM probes (Decagon devices Inc., 

USA) in each of the 28 plots. Soil sensors were placed in the middle of each plot, 12-15 cm below-

ground, and measurements were recorded every minute and stored as 2-hour average on a data logger 

EM50 (Decagon devices Inc., USA). Volumetric soil moisture was converted to percentage of moisture 

relative to field capacity using Saxton equations (Saxton et al., 1986). 

2.4 Soil moisture prediction 

Since soil moisture measurements had started in April 2013, they overlapped only partially with the 

mushroom collection period, which began earlier in 2008. To complement field observations, a process-

based soil water balance model, implemented in the R package called ‘medfate’ (De Cáceres et al., 2015) 

was used to reconstruct the historical daily series of soil moisture. The model requires forest stand 

characteristics, site and soil variables and meteorological series as inputs. Each individual tree was 

treated separately, and its height and leaf area index were estimated from DBH according to allometric 

equations fitted particularly for P. pinaster from the Spanish Third National Forest Inventory (Villanueva, 

2004). Soil was described in the model using two layers: topsoil (0 – 30 cm) and subsoil (30 – 150 cm). 

Soil texture was available from plot sampling. Macro-porosity was estimated from sand content and 

bulk density (Stolf et al., 2011), and values of the latter were obtained from the Harmonized World Soil 

Database (Fao/Iiasa/Isric/Isscas/Jrc, 2009). We used interpolated meteorological series as climatic input. 

The interpolation method proved superior compared to simple assignment of weather data from the 

closest station, when compared as an input for the soil moisture balance model. Since the model does 

not simulate changes in forest structure, to account for tree growth we simulated soil water balance 

twice for each stand, using DBH measurements from two inventories, one carried out in December 2010 

and the other in August 2013. Model predictions for the period prior to the first inventory (i.e., 2008-

2010) and after the second inventory (i.e., 2013-2015) were obtained using DBH values from the first 

and the second inventories, respectively. Predictions for the period between the two inventories were 

obtained averaging the two simulations, using weights based on their relative proximity to each of the 

inventories.  
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Top-soil moisture predictions were validated by comparing them with the field measurements based on 

the mean square deviation (MSD) and its decomposition into three additive components; squared bias 

(SB), non-unity slope (NU) and lack of correlation (LC) (Gauch et al., 2003). The comparison was done 

using daily and monthly time-steps. 

Since model predictions are sensitive to the proportion of fine roots in each soil layer and this 

information was lacking, we determined the partitioning of fine roots that maximized the fit to observed 

soil moisture data in each plot. Specifically, 100 model simulations were done for each plot varying the 

root proportion in the topsoil between 0.01-0.99 (the proportion of roots in the subsoil was its 

complement). We selected the partitioning of fine roots corresponding to the lowest MSD between 

observed and predicted soil moisture. Wilcoxon tests indicated a statistically significant reduction in 

MSD between calibrated and non-calibrated fine root partitioning regardless of the temporal resolution 

of the comparison with observed data (daily, weekly and monthly time steps). Finally, a dataset of 

monthly averages of soil moisture was constructed, incorporating field observations complemented by 

model predictions for the missing period. Daily meteorological data was also aggregated into monthly 

values before building mushroom productivity models. 

2.5 Mushroom occurrence and productivity modeling 

Annual yield models were developed for the fresh mass of total, edible and marketed mushrooms, using 

data from the 28 mushroom inventory plots. Monthly values of the following climatic and micro-climatic 

variables were used as predictors of annual yield: accumulated precipitation, number of rainy days, 

average mean temperature, average maximum temperature, average minimum temperature, diurnal 

temperature difference, average mean relative humidity, average maximum relative humidity and 

average minimum relative humidity (Table 2).  

A preliminary examination of the correlation between all monthly climatic and micro-climatic variables 

and the total, edible and marketed annual mushroom yield was done based on both Spearman and 

Pearson correlation matrices. Variables showing high correlation, as well as variables known as 

important predictors from the literature, were plotted against the response variables in order to 

evaluate the shape of their relationship. Finally, predictors were selected only if their correlation with 

mushroom yield was statistically significant, biologically sound and in agreement with current scientific 

knowledge on forest and fungal ecology, while at the same time avoiding multicollinearity. 

Micro-climate refers to variables derived from the interaction between climate, site and soil variables 

and forest characteristics. Hence, micro-climatic variables are plot-specific. Soil moisture is representing 

the combined effect derived from precipitation, soil structure and texture, and forest stand 

characteristics. We differentiated between climate-based and micro-climate-based models by replacing 

precipitation (both accumulated rainfall and number of rainy days) with soil moisture values (either 

measured in the plots or predicted by the process-based model).  

We fitted mixed-effect models (Pinheiro and Bates, 2000) using plot identity as random effect to 

account for between-plot differences arising from variation in site, soil and forest characteristics. Year 

random effects were not considered since the productivity of the same plot is mainly driven by climatic 



7 
 

differences between years and adding a year random effect would hinder assessing the role of climatic 

and micro-climatic variables on mushroom productivity, which was the focus of this research.    

The probability of occurrence of mushrooms in a given plot and year was 1 (i.e., for every plot, in every 

year, at least some mushrooms emerged). Nevertheless, when focusing on edible or marketed 

mushroom species zero annual yield values occurred in several plots. This pattern becomes more 

prominent due to the stochastic nature of mushroom emergence and the small size of inventory plots, 

further increasing the probability for zero yield. Therefore, a two-stage modeling approach was used for 

modeling annual production of edible and marketed mushrooms, accounting for two separate states 

(De-Miguel et al., 2014; Hamilton Jr. and Brickell, 1983). The first stage aimed at estimating the 

probability of mushroom emergence by means of logistic regression (Eq. 1) using a logit link function 

(Eq. 2) based on binomially distributed data concerning the absence or presence of mushrooms in a 

given plot and year. The second stage aimed at estimating mushroom yield in log scale, conditional on 

the former probability of occurrence, using linear mixed-effects modeling (Eq. 3). Snowdon’s bias 

correction factor (Snowdon, 1991) was used when back-transforming model predictions from log scale 

to original units.  

The final production models result from the multiplication of the probability of occurrence by the yield 

conditional on the probability of occurrence (Eq. 4), thus reflecting a combined effect of two separate 

states, thus revealing the distinct climatic and micro-climatic variables required by each.  

 

 

Eq. (1)                          
 

      (      )     
     

Eq. (2)             [
    

      
]                  

Eq. (3)                                          

Eq. (4)                                            

Where            is the probability of edible or marketed mushroom occurrence in plot i and year j. 

            is the yield (kg ha-1 yr-1) conditional on occurrence of edible or marketed mushroom, except 

for total mushroom biomass for which it represents the absolute annual yield since the occurrence of 

this group is always 1 in the data.         is the predicted total, edible or marketed mushroom yield (kg 

ha-1 yr-1) in plot i in year j. α and β denote fixed-effects model parameters, a0 and b0 denote random 

effects,    and    are vectors of predictor variables and   is residual following a normal distribution 

with mean equal to zero and variance equal to   .         is the correction factor of the back-

transformation bias.  

Model evaluation and selection was iterative and systematic based on forward selection of predictors 

upon fitting statistics, considering the significance of model parameters (t-value > 2, p-value < 0.05), 
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likelihood-ratio tests and residual standard error. Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) were used for variable selection in order to prevent over-fitting and 

construct parsimonious models. Logistic models for the probability of mushroom occurrence were 

further assessed by computing their receiver operating characteristics (ROC) curve and its corresponding 

area under the curve (AUC). Yield models were further evaluated by partitioning their MSD in three 

additive components; SB, NU and LC (Gauch et al., 2003). 

All data analyses and model fitting were performed in R software 3.2.2 (R Development Core Team, 

2015). Mushroom models were fitted using “glmer” and “lmer” functions of “lme4” package (Bates et 

al., 2014).   

 

 

3. Results 

3.1 Water balance model and soil moisture estimation 

Soil moisture predictions of the water balance model matched reasonably well the values measured in 

the plots, with the single exception of plot 22, which exhibited higher MSD (Figure 1). The high bias for 

this particular plot was probably caused by its extreme gross texture and high rock content (which might 

result from an unrepresentetive soil texture) leading to very low water holding capacity and strong 

fluctuation of soil moisture values. Therefore, for this specific plot, we decided to discard the predicted 

values. The proportion of fine roots distributed between topsoil and subsoil was calibrated for each plot, 

reducing significantlly the MSD values. As a result, the average MSD was 0.025.  

  

a b 

Figure 1. a) Plot-specific mean squared deviation (MSD) of soil moisture predictions resulting from the difference between 

measured soil moisture values and model’s predictions after calibration. The MSD is partitioned in three components; 

Squared Bias (SB), Non-unity Slope (NU) and Lack of Correlation (LC). b) Comparison of predicted and observed monthly soil 

moisture between field measurements and model prediction, an example of plot 11. 
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3.2 Models for total mushroom production 

The information about model parameter estimates and predictors of total mushroom production (kg ha-

1 yr-1), together with the uncertainty of their estimates are presented in Table 3, while the individual 

effect of selected parameters is presented in Figure 2. The climate-based model (residual variance 

1.031, plot random effect variance 0.330) performed better than the micro-climate-based model 

(residual variance 1.690, plot random effect variance 0.287), and the root mean squared deviation 

(RMSD) was 83.2 (kg ha-1 yr-1) and 98.7 (kg ha-1 yr-1), respectively.  For both models SB was zero, and the 

majority of error was derived from LC, which was higher in the micro-climate-based model. On the other 

hand, NU was slightly lower in the micro-climate-based model (Figure 5). 

Precipitation and temperature are the most important predictors in the climate-based model. 

Precipitation of September, together with the accumulated number of rainy days in September, October 

and November, all had a significant positive influence on the annual total mushroom yield. For each 

month separately, the number of rainy days were increasing with the amount of precipitation. 

Therefore, it often revealed as a more significant predictor, contributing additional insight into the effect 

of the distribution of precipitation on mushroom productivity. The combined effect of November and 

December’s average minimum temperature had a significant positive effect on mushroom yield, 

meaning that the higher the minimum temperatures were the higher was the yield. 

The micro-climate-based model included a wider variety of predictors as compared to the climate-based 

model. Total mushroom annual yield exhibit a positive correlation with soil moisture of October, the 

combined effect of November and December’s average minimum temperature and the average 

maximum relative humidity of September. Furthermore, the model reveals a negative effect of the 

combined average maximum temperatures of September and October, meaning that the lower the 

maximum temperatures the higher the yield. 

Table 3. Fixed parameter estimates of the models, describing the relationship between total mushroom yield and climatic 

and micro-climatic predictors. P 9 is the accumulated precipitation in September, raindays 9 is the number of rainy days in 

September when 10 and 11 represent October and November, respectively, Tmin 9/ Tmax 9 are the average 

minimum/maximum temperature in September when 10, 11 and 12 represent October, November and December, respectively, 

and RHmax 9 is the average maximum relative humidity in September, SM 10 is the average soil moisture in October. Brackets 

represent accumulated values. 

Model Eq. Predictor Coeff. Estimate St. error T value 

Climate-based 3 Intercept    -5.498     0.615 -8.945 
  P 9    0.022    0.002 9.337 
  log(raindays 9+ 

raindays 10+     
raindays 11) 

   2.096    0.205   10.195 

  (Tmin_11+Tmin_12)    0.259    0.029    8.791 

Micro-climate-based 3 Intercept    -29.849     4.835   -6.173 
  SM 10    2.536    0.600   4.224 
  (Tmax 9+Tmax 10)    -0.225    0.029   -7.710 
  (Tmin 11+Tmin 12)    0.445    0.046    9.634 
  RHmax 9    0.403     0.058   6.939 
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Figure 2.  Effect of individual predictors on total mushroom yield, for climate-based and micro-climate-based models. 

 

 

3.3 Models for edible mushroom occurrence and productivity 

The information about the models of edible mushroom production (kg ha-1 yr-1) and the uncertainty of 

their estimates are presented in Table 4, for both the probability of occurrence and yield conditional on 

occurrence (kg ha-1 year-1). The individual effect of selected parameters is presented in Figure 3.  

The probability of occurrence in the climate-based model (AUC= 0.90) was positively related to the 

number of rainy days in October and the combined average temperature of November and December. 

The yield conditional on occurrence model (residual variance 1.340, plot random effects variance 0.520) 

shared similar predictors with the total mushroom yield model. The root mean squared deviation 

(RMSD) was 85.7 (kg ha-1 yr-1), SB was zero and the majority of error was derived from LC (Figure 5). 

The probability of occurrence in the micro-climate-based model (AUC= 1.00) was positively correlated 

with the soil moisture in October and the combined average minimum temperature of November and 

December. The yield conditional on occurrence model (residual variance 1.941, plot random effects 

variance 0.468) differed from the total mushroom yield model only in variable transformation. 

Moreover, it shared similar predictors with the probability of occurrence model with the sole addition of 

the positive influence of maximum relative humidity of September. The root mean squared deviation 
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(RMSD) was 88.0 (kg ha-1 yr-1). SB was zero, the majority of error was derived from LC, and NU was 

slightly lower compared to the climate-based model (Figure 5). 

 

Table 4. Fixed parameter estimates of the models describing the relationship between edible mushroom yield and climatic 

and micro-climatic predictors. P 9 is the accumulated precipitation in September, raindays 9 is the number of rainy days in 

September when 10 and 11 represent October and November, respectively, T /Tmin 9 /Tmax 9 are the average 

mean/minimum/maximum temperature in September when 10, 11 and 12 represent October, November and December, 

respectively, and RHmax 9 is the average maximum relative humidity in September, SM 10 is the average soil moisture in 

October. Brackets represent accumulated values. 

Model Eq. Predictor Coeff Estimate St. error T value P value 

Climate-based 1 Intercept    -13.135      4.188    0.002** 
Logistic   Sqrt(raindays 10)   3.388  1.301     0.009** 
  sqrt(T 11+T 12)   2.291      0.718     0.001** 

Yield  3 Intercept    -5.828    0.842   -6.921  
  P 9   0.025    0.002  9.237  

  log(raindays 9+ 
raindays 10+ 
raindays 11) 

  2.031    0.260    7.794  

  (Tmin 11+Tmin 12)   0.269    0.037    7.251  

Micro-climate-based 1 Intercept    -17.008      12.630    0.178 

Logistic  Sqrt(SM 10)   44.221      21.509     0.040* 

  (Tmin 11+Tmin 12)   9.722       2.628     0.000*** 

Yield  3 Intercept    -184.915     28.923 -6.393  

  Sqrt(SM 10)   3.243     1.023    3.168  

  (Tmax_9+Tmax_10)   -0.235        0.034      -6.869  

  (Tmin_11+Tmin_12)   0.425     0.057    7.352  

  Log(RHmax_9)      42.313 6.593 6.417  
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Figure 3.  Effect of individual predictors on edible mushroom yield, for climate-based and micro-climate-based models. 

 

3.4 Models for marketed mushroom occurrence and productivity 

The information about the models of marketed mushroom production (kg ha-1 yr-1) and the uncertainty 

of their estimates are presented in Table 5, for both the probability of occurrence and yield conditional 

on occurrence. The individual effect of selected parameters is presented in Figure 4. The probability of 

occurrence in the climate-based model (AUC = 0.96, plot random effect variance 3.419) was positively 

correlated with the number of rainy days in September, the amount of rain in October and the average 

minimum temperature of November. The yield conditional on occurrence model (residual variance 

1.367, plot random effects variance 0.724) exhibited two main differences compared to the probability 

of occurrence model; an increasing-decreasing influence of the precipitation amount in October 

suggesting that extreme high values of precipitation might cause a decrease in the yield of marketed 

mushrooms, and a positive influence of November’s mean temperature only. The root mean squared 

deviation (RMSD) was 51.3 (kg ha-1 yr-1). SB was zero, NU virtually zero, while the error was almost 

completely derived from LC (Figure 5). 

The probability of occurrence in the micro-climate-based model (AUC = 0.93) was positively influenced 

by the combined effect of soil moisture in September and October and the average minimum 

temperature of November, while negatively affected by the average maximum temperature of October. 

The yield conditional on occurrence model (residual variance 1.861, plot random effects variance 0.768) 
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showed to be positively influenced by soil moisture of October and maximum average temperature of 

November, while negatively affected by maximum average temperature of October. The root mean 

squared deviation (RMSD) was 69.7 (kg ha-1 yr-1). SB and NU were zero, while the whole error was 

derived from LC (Figure 5). 

 

Table 5. Fixed parameters of the models describing the relationship between marketed mushroom yield and climatic and 

micro-climatic predictors. P 10 is the accumulated precipitation in October, raindays 8 is the number of rainy days in August 

when 9 represent September, T 11 /Tmin 11  are the average mean/minimum temperatures in November, Tmax 10 is the 

maximum temperature in October, and SM 9 is the average soil moisture in September when 10 represent October. Brackets 

represent accumulated values. 

Model Eq. Predictor Coeff Estimate St. error T value P value 

Climate-based 1 Intercept    -7.589 1.591  0.000*** 
Logistic  Raindays 9   0.466 0.0790  0.000*** 

  Log(P 10)   1.144 0.286  0.000*** 

  Tmin 11   0.369 0.148  0.013*   

Yield 3 Intercept    -9.236 1.634 -5.652  
  (raindays 8+raindays 9)   0.127 0.021 5.949  

  P 10    -0.045 0.007 -6.086  
  Sqrt(P 10)   1.006 0.137 7.311  

  Log(T 11)   2.823 0.626 4.508  

Micro-climate-based 1 Intercept    1.909 2.258     0.398 
Logistic  (SM 9+SM 10)   6.847 1.217     0.000*** 
  Tmax 10   -0.624    0.151   0.000*** 
  Tmin 11   0.784 0.204    0.000*** 

Yield 3 Intercept    -3.099 2.491 -1.244  
  Log(SM 10)   1.859 0.446 4.169  

  Tmax 10                    -0.285 0.127 -2.245  
  Tmax 11                    4.839 1.661 2.913  
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Figure 4.  Effect of individual predictors on marketed mushroom yield, for climate-based and micro-climate-based models. 

 

Figure 5. Mean squared deviation (MSD) of climate-based and micro-climate-based mushroom models, within the three 

mushroom categories, resulting from the difference between observed mushroom yield and model’s predictions. The MSD is 

partitioned in three components; Squared Bias (SB), Non-unity Slope (NU) and Lack of Correlation (LC). 
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4. Discussion 

4.1 Differences between yield and occurrence models and between mushroom categories 

Models of total mushroom production and edible mushroom yield shared the same predictors, for both 

climate-based and micro-climate-based models. This result is logical since edible mushrooms represent 

87% of the total mushrooms. In contrast, marketed mushrooms represent 43% of the total mushroom 

production consisting mainly of Lactarius spp. and Macrolepiota procera, thus those models are mainly 

driven by the ecological requirements of these two species, which in the wider resolution of total or 

edible mushroom models had a much smaller influence. The predictors composing marketed mushroom 

models shifted one month earlier compared with total and edible mushroom models. Namely, the 

climate-based model included August’s precipitation and excluded November’s, while the micro-

climate-based model included the soil moisture of September in addition to October’s. Furthermore, 

both excluded the temperatures in December, being the last month of the fruiting season. These results 

indicate on an earlier phenology of the marketed species and match the fact that Macrolepiota procera 

fruit early in the season and is exclusively responsible for the yield of September in our study area. This 

raises concerns regarding the future economic activity surrounding mushroom picking and trade, since 

edible mushrooms in Mediterranean ecosystems may be experiencing a sharp drought-induced 

decrease in fruit body productivity due to delayed phenology in the autumn season (Büntgen et al., 

2015), while some of the earliest species to fruit belong to the marketed mushroom category.  

Models for probability of occurrence and models for yield differed in their predictors. Generally, yield 

models consisted of a larger number of predictors which covered the extent of the whole fruiting 

season, while only a narrower time frame was required for the occurrence of mushrooms. For instance, 

the climate-based model for edible mushroom occurrence was dependent on the precipitation in 

October and the temperature in November and December, while the increase in yield depended on the 

extension of precipitation predictors throughout the fruiting season from September to November. 

Similarly, the micro-climate-based model depended on soil moisture in October and temperature in 

November and December, whereas the yield increased with the extension of convenient temperatures 

throughout the whole fruiting season as indicated by the addition of a negative correlation with 

maximum average temperature in September and October as well as a positive correlation with relative 

humidity in September.  

Regarding marketed mushrooms, the climate-based model for the probability of mushroom occurrence 

showed a dependence on the precipitation in September and October and the temperature in 

November, while an increase in yield resulted from the addition of precipitation of August which is 

positively affecting the early yield of Macrolepiota procera in September. Another interesting difference 

was the increasing-decreasing effect of precipitation in October only in the yield model. This suggests 

that while precipitation is essential for mushroom occurrence, the effect on the yield can turn negative 

in excessive wet conditions (Boddy et al., 2014) which may be due to reduced soil aeration (Moore et al., 

2008). 
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4.2 Effect of climatic and micro-climatic variables on mushroom occurrence and productivity 

Precipitation and temperature are the most important predictors of mushroom emergence and yield. In 

the Mediterranean, mushroom production is limited in the beginning of the season (September-

October) by high temperatures and low rainfall, in other words, by a prolongation of summer drought. 

The extension of summer-like weather during the fruiting season diminishes the production because the 

required autumn weather conditions are absent. Fungal communities in Mediterranean ecosystems may 

already be experiencing a delayed phenology and reduced production for these exact reasons (Boddy et 

al., 2014). On the other hand, in the end of the season (November-December), when precipitation and 

water availability in the soil are sufficient for mushroom fruiting, the production is limited by low 

temperatures. Hence, cold temperatures in these months mark an influence of winter-like weather in 

the fruiting season and the consequent decrease in production, as was already documented in a sub-

Mediterranean climate (Hernández-Rodríguez et al., 2015). While the effect of temperature on 

mushroom production in the literature is reported as variable (Boddy et al., 2014), we found that there 

is no contradiction in having both positive and negative effects within the same ecosystem during a 

single fruiting season.  

Interestingly, in most cases our models indicated that the average maximum and minimum 

temperatures for September-October and November-December, respectively, are more significant 

predictors than mean temperatures. While agreeing with the literature regarding a non-linear effect of 

temperature on fungal development (Boddy et al., 2014), these findings also propose a greater 

sensitivity of mushroom fruiting to daily extreme temperatures over mean temperatures, suggesting 

that exposure to extreme weather events might result in a greater inhibition of production. 

The number of rainy days in a particular month was highly correlated with the amount of rainfall, thus in 

many cases revealed as a more significant predictor since it is an indicator of both a higher amount of 

rainfall as well as its broader distribution.  Precipitation (i.e., rainfall and number of rainy days) exhibits a 

one-month time lag in its correlation with mushroom productivity. In all models it became a significant 

factor one month before the mushroom season starts (i.e., one month before September concerning 

marketed mushrooms and October concerning edible and total mushrooms), and ceased to be 

significant one month before the end of the season (i.e., one month before November concerning 

marketed mushrooms and December concerning edible and total mushrooms). This  is in agreement 

with previous research indicating a one month delay in the effect of rain events on mushroom 

production in the Mediterranean (Bonet et al., 2012, 2010; Martínez de Aragón et al., 2007; Martínez-

Peña et al., 2012; Salerni et al., 2002; Taye et al., 2016), as well as confirming expert knowledge of 

experienced mushroom pickers.   

Our data also showed an off-season effect of weather on mushroom productivity, exhibiting a highly 

negative relationship between precipitation in March (and to lesser extent in the whole spring) and 

autumn mushroom production. However, we could not find any support in the literature for such 

negative effect. On the other hand, spring precipitation was inversely correlated with autumn 

precipitation, an accepted fundamental driver of mushroom fruiting in the autumn season. Moreover, 

carbon from photosynthetic activity arrives to symbiotic fungi within days (Högberg et al., 2008; Leake 
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et al., 2001). For all these reasons, we disregarded the negative effect of March precipitation as a 

statistical artifact rather than a true effect, further raising skepticism regarding an off-season effect on 

mushroom productivity.     

Nevertheless, weather beyond the mushroom season can affect mushroom phenology (Boddy et al., 

2014; Büntgen et al., 2015). Similarly to our findings that the invasion of summer or winter weather to 

the autumn months can shorten the fruiting season and limit mushroom production, the expansion of 

autumn weather might result in the contrary. Therefore, suitable conditions in the months adjacent to 

the fruiting season can extend the length of the season, consequently affecting the annual yield.  

Soil moisture is known to be a crucial driver for fungal development and fruiting (Barroetaveña et al., 

2008; Martínez de Aragón et al., 2007; Ogaya and Peñuelas, 2005). Nevertheless, its effect in our models 

was limited to rather warm months solely (September-October). During the colder months of the 

fruiting season (November-December), high values of soil moisture were associated with low mushroom 

production, not because of a true negative effect, but due to the low temperatures (which decrease soil 

depletion rates but also affect fruiting negatively). This interaction produced an illogical negative 

correlation between soil moisture and mushroom productivity. 

In all our models, soil moisture appeared as a significant mushroom predictor one month later than 

precipitation did, matching the initiation of fruit body production (i.e., September concerning marketed 

mushrooms and October concerning edible and total mushrooms). Soil moisture follows rainfall event’s 

intensity (Ogaya and Peñuelas, 2005), and showed a positive correlation with precipitation of the same 

and former month. Nevertheless, maximum relative humidity, and not soil moisture, appeared 

significant in the month prior to fruiting (probably only due to high correlation with precipitation) 

indicating that precipitation is probably influencing mushroom yield mainly by increasing soil moisture. 

The delay between precipitation and mushroom productivity might be explained by the necessity to first 

acquire enough fruiting potential before the initiation of fruit bodies (Krebs et al., 2008; Salerni et al., 

2002). 

 

4.3 Causal drivers vs. predictive variables of mushroom productivity 

It is important to distinguish between causal drivers and predictors of mushroom productivity. 

Precipitation is not the most proximal causal driver of fungal development, at least compared to soil 

moisture, but precipitation variables proved as more significant predictors of mushroom productivity. In 

other words, it seems that rain events summarize several important causal drivers, such as positive 

influence on soil moisture and relative humidity, and negative or positive effect on temperature (which 

depends on the climatic conditions in a particular area and the time of the year). Micro-climate-based 

models, which included soil moisture instead of precipitation variables, had lower explanatory power 

than climate-based models, although they were less biased compared to climate-based models since 

most of their error resulted from the lack of correlation between observations and predictions while 

exhibiting lower non-unity slope (Figure 5). Nevertheless, micro-climate-based models provided a more 

profound insight into mushroom production dynamics. Since soil moisture did not correlate as strongly 
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with other variables as precipitation did, model selection led to the inclusion of predictors that were not 

selected in the climate-based models, and sharpened the effect of others. For example, micro-climate-

based models refined the negative effect of low mean temperatures in November and October, 

revealing the high sensitivity of edible mushroom emergence to extreme temperatures by replacing the 

predictor of mean temperature by minimum temperature. Similarly, the negative effect of maximum 

temperatures in September and October on total mushroom production, and the positive influence of 

relative humidity in September on total and edible mushroom yield only appeared significant when 

accounting for soil moisture instead of precipitation in the models. Therefore, our results suggest that 

the inclusion of precipitation as a predictor, while having great predictive ability, may obscure the effect 

of several mushroom fruiting drivers because of the correlation between precipitation and these drivers.  

 

 

5. Conclusions 

Yield models are affected by weather conditions extending over the whole autumn fruiting season, 

while only a narrower time-frame is required to ensure the occurrence of mushrooms. Our results 

emphasize that mushroom production during the autumn fruiting season in the Mediterranean 

(September-December) is primarily dependent on weather conditions during the same month, with the 

exception of precipitation which exhibits a delayed effect of one-month. Temperature has both positive 

and negative effects on mushroom production depending on the period within the fruiting season, when 

production is limited by high temperature at the beginning of the season (September-October) and by 

low temperatures towards the end (November-December). Micro-climate-based models proved useful 

since they provided more profound insight into the processes of mushroom fruiting, allowing us to 

distinguish between causal drivers and predictors of mushroom productivity, whereas climate-based 

models provided better explanatory power thus may be used when the aim is yield prediction.   

A higher resolution analysis would be needed (e.g., daily or weekly values) to further clarify the 

interaction between climate and micro-climate and their effect on mushroom production. An increased 

temporal resolution might lead to a better performance of soil moisture over precipitation as a predictor 

of mushroom productivity, since it would supply an improved representation of soil water balance 

between rain events, which is obscured when using monthly means. Furthermore, this fine-grained 

analysis would allow gaining a deeper knowledge of the relationship between precipitation, soil 

moisture and the time-lag effect on mushroom production, while at the same time describe more 

precisely the effect on phenology. The use of a process-based modeling approach proved fruitful and 

might supply further Insight into the effect of micro-climatic conditions which can contribute to further 

increasing our understanding of fungal dynamics in forest ecosystems. 
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