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Abstract 

Relatively little is known about the vegetation fire regimes in China. To investigate 

the fire regime characteristics and the potential drivers, twelve fire regime variables 

were selected and computed in grid cells cover: (1) fire frequency and its inter-annual 

variability, (2) annual burned area and its inter-annual variability, (3) frequency-size 

inequality, (4) seasonality, (5) fire intensity and (6) land cover types affected by fires, 

using MODIS burned area and active fire data during 2001 to 2014. The variables 

were normalized and the principal components were extracted and clustered.  

The results showed that approximately 67.9% of land in China is affected by 

wildfires, and around 3.3% burned area is with relatively high fire activity located 

mainly in Northeast and East China. The barren or sparsely vegetated western China 

is nearly fire free. Active fires were detected in Central China but the area burned was 

not detectable from MODIS. Forest fires in northern China are relatively large, less 

frequent, with a short fire season peaks in non-winter seasons and higher inter-annual 

variability, implying that there is a higher probability of lightning fires. In contrast, forest 

fires in southern China are relatively small, more frequent, with a long fire season 

peaks in non-summer seasons and lower inter-annual variability, implying that they 

were mostly caused by anthropogenic ignitions. Low inter-annual variability and low 

intensity were associated with cropland fires, whereas grassland fires more likely 

exhibit the opposite. Four fire regimes were discriminated on the basis of data 

sources, burned area and vegetation types.  

The distribution of fire characteristics is driven by a combination of fuel, 

topography, climate and human activities. The proposed fire regimes could help to 

identify the ecological role of fire, and to support fire risk mitigation and natural 

resources management decisions. Further research is needed to have a more 

comprehensive understanding of fire regimes in China. 

Keywords 

Fire regimes, remote sensing, MODIS, cluster analysis, fire drivers, China. 



Introduction 

1 
 

1. Introduction 

 Since late Silurian period (~ 420 million years ago), fire has played a role 

modifying the atmosphere and influencing ecosystem structure and function in Earth 

history (Summers et al., 2011). Fire acts as a prominent disturbance factor and an 

agent of environmental change significantly impacting terrestrial, aquatic, and 

atmospheric systems throughout the world (Lentile et al., 2006; Roy et al., 2013). 

Fires are local events, with regional scale characteristics, governed by global scale 

climate patterns (Summers et al., 2011). They are the main responsible of 

atmospheric pollution in tropical latitudes, the principal agent of deforestation and land 

use change in the rain forest, and one of the most prominent sources of land 

degradation in Mediterranean areas of Europe (Chuvieco, 2000). They also influence 

germination and plant regeneration thus controlling species succession and structure 

and their evolutionary fire-prone traits in ecosystems (Moreno & Chuvieco, 2013; 

Barros & Pereira, 2014). 

 To better understand the role of fire, the concept of fire regime was introduced to 

describe the spatial and temporal fire characteristics in terms of fire occurrence, 

spread, behavior and effects, such as fire frequency, seasonality of fires, fire intensity 

and severity and the types and patterns of fires. Fire regimes result from dynamic and 

complex processes controlled by the interactions and feedbacks between fire, climate, 

vegetation attributes, landscape characteristics, land use and ignition patterns (Barros 

& Pereira, 2014) and tend to change along with the alterations of these factors, which 

vary in multiple temporal and spatial scales. However, the pattern and extent of 

constraint associated with fire characteristics can be predicted. For example, fire 

intensity is strongly determined by the amount of fuel available, whereas frequency 

and fire seasonality might be more closely related to the probability of flammable 

conditions; furthermore, fire frequency should be negatively related to maximum 

fireline intensity since when fire is frequent, fuel load is more difficult to accumulate for 

producing high-intensity fires (Archibald et al., 2013). 
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Fire regimes are important to evaluate the effects of fire, and to predict how 

patterns of fire might change in response to environmental and human drivers 

(Archibald et al., 2013), further, to assist in fire risk mitigation and natural resources 

management for managers and policy-makers. For instance, fire effects could be mild 

or positive with long history of fire regimes because vegetation and soils are typically 

adapted to fire conditions, or potentially negative if fire regimes change rapidly even 

become intense and frequent (Moreno & Chuvieco, 2013).  

 The study of fire regimes has been prolifically and widely carried out in various 

spatial and temporal scales, covering topics, for example, from how plant species 

adapt to wildfire (Fernandes & Rigolot, 2007), to how landscape interacts with wildfire 

(Moreira et al., 2011); from characterizing wildfire regimes in decades (Malamud et al., 

2005), to discussing fire regimes in millenniums (Gill et al., 2009); from reconstructing 

the incidence of past fire and its relationship to changing climate and vegetation 

(Gavin et al., 2007), to monitoring the occurrence of fires responding to the change of 

climate and vegetation currently (Pausas, 2004). The influence of climate change and 

anthropogenic activity in altering the past, current and future fire regimes has become 

a dominant research topic in recent fire regime study (Guyette et al., 2002; Gillett et 

al., 2004; Marlon et al., 2008; Bowman et al., 2009). 

 In China, fire regimes were predominantly investigated in a local scale in 

Northeast China. Interesting case studies are the spatial patterns and the possible 

drivers of fire occurrence and how it responses to climate change in a boreal forest 

(Liu et al., 2012), the long-term effects of fire suppression on a forest landscape in the 

Great Xing’an Mountains change fire regimes in this region (Chang et al., 2007; Wang 

et al., 2007), and the development of customized fire behavior fuel models for boreal 

forests of northeastern China (Wu et al., 2011). Relatively scarce literature can be 

found on the characterization of wildfire regimes in China. Krawchuk and Moritz (2009) 

modelled the spatial distribution of fire regimes in China by quantifying the relationship 

between LANDFIRE fire regime classes and a global climate data set in comparison 

with the United States. However, a direct measurement of fire regimes at national 

scale in China is still missing and it is very important to fill this gap to understand the 
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ecological role of wildfires. 

 It is worthy to notice that field data are typically absent or deficient, as in China, 

where data sources from satellites coupled with simulation models are often used in 

forest fires detection, burning emission estimation, and forest fire risks (Zhang et al., 

2011). Hence, the use of remote sensing can play an indispensable role in 

characterizing fire regimes globally and locally. Chuvieco et al. (2008) defined global 

fire regimes by developing a set of metrics representing three axes of fire activity: fire 

density, seasonal duration and inter-annual variability from Moderate Resolution 

Imaging Spectroradiometer (MODIS) active fire data. Archibald et al. (2013) also 

identified five key characteristics of fire regimes globally: size, frequency, intensity, 

season, and extent, using a combined dataset including MODIS data and Global Fire 

Emissions Database (GFED). However, to the extent of our knowledge, similar 

studies have not been carried out at a national/local scale using global remotely 

sensed estimates of active fire and burned area, and we believe that local scale study 

can provide different perspectives on remotely sensed fire regimes from a global 

scale one. 

 China is a mountainous country with the world’s largest population density. The 

lifted Tibetan Plateau together with a geographic difference that the eastern margin is 

connected with ocean but the western boundary abuts the large Eurasian landmass 

has formed an “east wet, west dry” bioclimatic pattern. Human activity is the dominant 

cause of fires although the possibility of fire occurrences may vary greatly with climate, 

vegetation and landscape, nevertheless, the fire regimes in China are still poorly 

understood as far as we know. 

 In this study, our research objectives are to characterize fire regimes in China 

deriving from MODIS burned area and active fire data and further discuss the 

interactions between fires and dominant drivers of fire regimes (climate, vegetation 

and landscape) as well as the potential influences of anthropogenic factors on the fire 

regimes, with implications for fire risks mitigation and natural resources (vegetation 

and land) management. 



Review of Literature 

4 
 

2. Review of Literature 

Fire regime as a key concept in disturbance ecology at present has not been 

clearly and strictly defined, yet being widely used in many scientific areas. It is also 

quite a difficult concept to be defined in practice, considering the complex biophysical 

environment in multiple spatial extent and timescales and anthropogenic factors 

(Krebs et al., 2010). Krebs et al. (2010) have reviewed at length how the concept of 

fire regime originated from French had evolved and spread in English literatures 

especially after the release of the Leopold Report, when the idea of fire disturbance in 

ecosystems was introduced and adopted. The paper presented the used definitions of 

fire regimes on factors reflecting ignition conditions, burning process and fire effects in 

various temporal and spatial scales. Also, they proposed drawing different types of 

definitions of fire regime according to the study objectives and the level of complexity. 

Similarly, Conedera et al. (2009) suggested defining fire regime flexibly combing 

user-defined fire attributes and the physical nature of fire under its biological context.  

Furthermore, they both differentiated fire regimes in a strict sense (“sensu 

stricto”), which assembles the core components describing which fire (type, intensity, 

fire behavior, etc.), when (frequency, seasonality, synchronicity, etc.) and where (size, 

shape of fires, etc.) it occurs, and a wide sense (“sensu lato”), which clusters 

conditions controlling fire occurrence (fuel characteristics, fire weather, anthropogenic 

conditions, etc.), immediate fire effects (severity, mortality, costs and damages, etc.), 

and derived or composite parameters resulting from the combination of two or more 

basic variables and conceived to represent some complex characteristics of fire 

occurrence (trends, variations, classifications systems, etc.) (Conedera et al., 2009; 

Krebs et al., 2010). Davies (2013) also claimed fire intensity, fire frequency, fire extent 

and fire effect are the four key components in fire regime concept. In addition, the 

concept of fire regime is recommended to be examined across multiple temporal and 

spatial scales to characteristic the nature of fire within a biome integrating all possible 

variations in climate, fuel properties, and human influences in a paleoecological 
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perspective (Whitlock et al., 2010).  

Therefore, fire regime refers to the nature of fires occurring over an extended 

period of time, and it can be spatially described by a particular combination of fire 

characteristics, e.g. frequency, size, intensity, seasonality, severity, or combined 

descriptors (Morgan et al., 2001; Archibald et al., 2013). The frequency of fire can be 

measured as the average number of fires that burn over a given area per unit time, or 

the number of times that fires occur within a defined area and time period, and in a 

relatively small landscape area it can be expressed as fire rotation period, fire cycle, 

fire return interval, or probability of occurrence. Fire frequency is mostly controlled by 

fuel accumulation, moisture availability, ignition sources and human activities (Morgan 

et al., 2001; Summers et al., 2011; Davies, 2013). The magnitude of fire behavior and 

effects is described as fire intensity, a measure of fire behavior relating to the rate of 

heat release, and fire severity, the physical impacts of the fire directly associated with 

combustion and heat transfer (Davies, 2013). The seasonality of vegetation fires is 

driven by climate factors, ignition sources, and land use management practices 

(Benali et al., 2013). Those fire regime descriptors vary according to the spatial or 

temporal scale at which they are measured (Morgan et al., 2001), and the data 

availability also limits the way how they are measured. 

 Mapping fire regime provides decision supports on fire risk assessment and 

control, ecosystem restoration and natural resource management, and helps to 

quantify fire emissions and indentify knowledge gaps (Morgan et al., 2001; Archibald 

et al., 2013; Gundy & Melissa, 2014).  

Various data resources from fire history records (Kasischke & Turetsky, 2006; 

Moreno & Chuvieco, 2013; Mansuy et al., 2014), fire atlases (Rollins et al., 2001; 

Holden et al., 2005; Shapiro-Miller et al., 2007), fire scars (Fulé et al., 2003; Guyette 

et al., 2005; Falk et al., 2011), and satellite data (Oliveira et al., 2012; Archibald et al., 

2013; Molinario et al., 2014) are used in assessing fire regime, particularly remote 

sensed data is of great assistance in identifying fire regimes globally or in regional 

studies where field-based data is absent. Researchers have also made efforts to 

search supports from studies on paleoecology (Flannigan et al., 2001; Lynch et al., 
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2004), chemistry and climatology (Guyette et al., 2012), and other indirect evidences 

(Krawchuk & Moritz, 2009; Gundy & Melissa, 2014). Since those data resources have 

their own strengths and weaknesses in utility of describing different aspects in fire 

regimes, a combination of different types of data often helps to overcome the 

limitations of individual data sets and supplement the data deficiency (Morgan et al., 

2001; Holden et al., 2005; Shapiro-Miller et al., 2007; Krawchuk & Moritz, 2009). 

However, in the global scale of fire regime study, only remotely sensed data are able 

to capture the fire characteristics, despite the temporal scale is not satisfied to define 

the historical role of fires and there are uncertainties in accuracy assessment of the 

data products (Chuvieco et al., 2008; Archibald et al., 2013).  

 Although the approaches used in mapping fire regime are dynamic due to the 

study scales and data availability, the trend of applying integrated methods (e.g. 

combined data sets, remote sending and Geographic Information Systems (GIS), 

simulation and modeling) and multi-scale analysis in investigating the interactions 

among wildfires, vegetation, landscape, climate and human activities has become 

more evident (Rollins et al., 2004; Falk et al., 2007; Rollins, 2009; Falk et al., 2011). 

Recently researchers also tend to be more interested in studying the changes of fire 

regime under climate change and socioeconomic developments (Kasischke & 

Turetsky, 2006; Pausas & Fernández-Muñoz, 2012; Pezzatti et al., 2013; Moreno et 

al., 2014; Fréjaville & Curt, 2015).  

 The study of wildfire in China has been concentrating on forest fires, particularly 

in northeastern China after the catastrophic 1987 forest fires in this region. Many 

studies focused on the influence factors from natural (e.g. climate change, insect 

outbreak) and human disturbance (e.g. reforestation, fire suppression) on fire regime 

(Wang et al., 2006; Wang et al., 2007; Chen et al., 2011; Liu et al., 2012), or the 

impact of fire on the forest production and landscape in this area, mostly by using 

LANDIS simulation model (Wang et al., 2001; Li et al., 2013). According to their 

studies, fire occurrence density in northern China is positively related to the degree of 

temperature and precipitation change, fire frequency would be reduced by larch 

caterpillar disturbances and high fire suppression, while fire intensity would be 
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decreased by larch caterpillar disturbances but increased by high fire suppression. 

Those factors would also influence the fire regime by changing the structure of fuel 

types, for example, both high fire suppression and reforestation would increase larch, 

but decrease white birch, however, larch caterpillar disturbances have the opposite 

impacts (Wang et al., 2007; Chen et al., 2011). The effects of human actions may 

have a stronger influence on fire occurrence than climate change (Liu et al., 2012). 

Fire exclusion can lead to catastrophic fires with return intervals ranging from 50 to 

120 years, increase the proportion of coniferous forests and decrease the proportion 

of deciduous forests, simplify tree species composition, and alter forest age structures 

and landscape patterns (Chang et al., 2007). 

  Remote sensing and simulation models have been widely used in detecting forest 

fire hot spots, predicting fire risks and quantifying fire emissions in China (Calle et al., 

2005; Yan et al., 2006; Zhang et al., 2011; Huang et al., 2012; He et al., 2013; Tian et 

al., 2013), which are the main fire research topics in China. Fire regime, however, is 

with relatively little literature, especially a national scale. The distribution 

characteristics of forest fires and change of forest fire dynamic in China was studied 

and the results both showed that forest fires were mainly distributed in the south and 

southwest regions of China and mostly occurred in spring, caused by prescribed 

burning and agricultural fires (Tian et al., 2013; Tian et al., 2014). Nevertheless, fire 

regimes in China were firstly indirectly predicted and defined in LANDFIRE 

classification from statistical comparison with the United States based on the 

ecological similarities between the two land masses (Krawchuk & Moritz, 2009). They 

proposed a very high probability of grass fires with a 0 to 35 years return interval 

largely in Northeast and East China, shrub fires with a 35 to 200 years return interval 

in West China, where barren lands are the predominant land cover type at present, 

and forest fires with a 0 to 35 years return interval in a small area in Southwest China. 

On the contrary, absent fire activity in South and Southeast China was predicted in 

their study.
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3. Methodology 

Figure 1 shows the overall workflow of the methods developed for this thesis. 

3.1 Satellite data collection 

MODIS is a remote sensing instrument on board the morning-descending Terra 

(launched 1999) and afternoon-descending Aqua (launched 2002) polar-orbiting 

NASA satellites, with a revisit cycle of 1 to 2 days, including bands specifically 

designed for fire detection (Roy et al., 2013; Oliveras et al., 2014). The MODIS 

standard burned area product (MCD64A1) produced by the University of Maryland 

was collected from ftp://fuoco.geog.umd.edu/db/MCD64A1/. The MODIS standard 

active fire data (Global Monthly Fire Location Product - MCD14ML) and the MODIS 

land cover type product (Land Cover Dynamics Yearly - MCD12Q1) were both 

downloaded from https://earthdata.nasa.gov/.  

The detection of burned areas, i.e. areas affected by fire within a certain time 

interval, is based on the effects of fire on vegetation, such as structural change of 

vegetation, charcoal on the ground and exposed soil, using the MODIS algorithm 

locating the occurrence of rapid changes in daily surface reflectance (Roy et al., 2005). 

The MCD64A1 is a monthly product generated from applying the active-fire based 

burned area mapping algorithm on the 500-m MODIS cloud-free surface reflectance 

imagery (Giglio et al., 2009). It contains burn dates in ordinal day as a burning 

information layer in Hierarchical Data Format (HDF). The MODIS tiles of 

approximately 10 degrees x 10 degrees in size, assigned a horizontal (h) and vertical 

(v) coordinate (spatial extent) and ordered by Julian date of the starting day of the 

month (temporal scale), were merged to create a monthly map of the approximate 

study area by using GDAL in raster format. Then the monthly burn date maps from 

2001 to 2014 were used in further data processing. A mask of the Chinese boundaries 

was applied to select the region of interest. 

ftp://fuoco.geog.umd.edu/db/MCD64A1/
https://earthdata.nasa.gov/
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The detection of active fires, i.e. fires actively burning at the overpass time of the 

satellite under relatively cloud-free conditions, is mostly based on temperature using a 

contextual algorithm (Giglio et al., 2003). The MCD14ML was collected year by year 

by using NASA firms archive download tool in a shape file data point format at 1km 

resolution, and was then converted to raster data format from point selecting fire 

radiative power value field and setting cell size at 0.0045 degree and same raster in 

pixels with burned area data in ArcGIS. Each point of fire radiative power in the map 

was counted as a fire pixel in the computation. 

The MCD12Q1 is a yearly product at 500m × 500m spatial resolution contains 

five global land cover classification systems, in which the IGBP (International 

Geosphere-Biosphere Programme) global vegetation classification scheme was 

chosen in this study. The tiles were merged to create a yearly map of land cover in 

China from 2001 to 2012. The 16 land cover classes from the scheme were then 

aggregated into the four land cover classes in this study, i.e. forests, savannas, 

grasslands and croplands, as following: (1) the land cover classes enumerated from 1 

to 5, which describing different types of forests were grouped in the forests class; (2) 

the land cover classes enumerated from 6 to 9, which including shrublands and 

savannas, were grouped in savannas class for the reasons that very few fire pixels 

were detected in shrub lands and the marked similarity between shrubland and 

savanna; (3) the land cover class 10 was retained as grasslands class; (4) the land 

cover class 12 and 14 were grouped to croplands class, and (5) the rest 

non-vegetation land cover classes including wetlands, urban and built-up, snow and 

ice, barren or sparsely vegetated were all set as no data value to be excluded in the 

analysis of vegetation fires. 

3.2 Study area 

This study is on fire regime in the whole China located in East Asia, between 

17.5°N and 54°N latitude and 73°E and 135.7°E longitude and with an area about 960 

million km2 and a population of 1.3 billion.  
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According to the remote sensed images of land cover in this study, around 75% of 

China land covered with vegetation types, mainly forest, savanna, grassland and 

cropland, and shrublands only take up 2% area of the five vegetation types. The forest 

area especially in northeastern and central China has been increasing as observed in 

the land cover maps during periods available (2001 - 2012) in MODIS land cover 

product (see Figure 2). This was primarily because of large-scale afforestation efforts 

in China. China’s forests represent 34% of Asia’s forests and 5% of the worlds’ forests, 

around 207 million ha, which cover 22% of China land area (He et al., 2011).  

The forests are mostly distributed in Great Xing’an Mountains, Xiao Xing’an 

Mountains, and Changbai Mountains in northeastern regions, Qin Mountains and 

Hengduan Mountains in southwestern regions and other regions in southern China. 

The plains in Northeast and North China and Sichuan basin in Southwest China are 

largely occupied for agricultural uses. The Inner Mongolia Plateau, Tibetan Plateau 

and Huangtu Plateau are widely covered with grasslands and the area around the 

Yunnan-Guizhou plateau is mixed with savannas and grassland. In contrast, the other 

western part of China is sparsely vegetated or barren, where only Altai Mountains and 

Tianshan are visibly vegetated. 

The climate in China is diversified due to its wide span of latitude and 

mountainous topography, and the location of land and ocean. The Tibetan Plateau 

has significant influence on China climate, which has formed a unique plateau cold 

climate in the Southwest, and greatly impacted the monsoon climate in the East and 

the arid climate in the Northwest coupled with atmospheric circulation. The eastern 

part of China mostly has a monsoon climate, with hot, humid summers and cold, dry 

winters. Arid climate impacted by westerlies is prevailing in the northwestern inland 

regions, where deserts or barren lands are the typical landscape.  

As the most populous country in the world, China has experienced evident 

environmental degradation under intensive human activities in many regions. The 

consequential change of landscape and climate, accompany with the direct impact of 

human activities, also plays a very important role in fire regime in China. The 

development of urbanization has shifted a large part of population from rural areas to 
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metropolises, leading to a remarkable decreasing of agricultural manpower and the 

consequent accumulation of fuel load in fields. Given slash-and-burn cultivation and 

crop residue burning are traditional agricultural practices especially in southwestern 

China, agricultural fires occur regularly in those farm lands. 
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b)   

 

 

Figure 2 Yearly forest area calculated (a) and land cover of China in 2001 and 2012 

observed (b) from MODIS
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3.3 Computation of fire regime variables 

We computed twelve variables to characterize the fire regimes in China by using 

available remotely sensed data. The variables were chosen to describe the spatial, 

temporal and intensity attributes of fire regime. Specifically, these are: (1) mean 

annual number of fires; (2) inter-annual coefficient of variance in annual number of 

fires; (3) mean annual area burned; (4) inter-annual coefficient of variance in annual 

area burned; (5) Gini index of fire sizes; (6) 90th percentile of fire radiative power; (7) 

fire season duration; (8) fire pixels in peak month; (9) percentage of forests affected 

by fire; (10) percentage of savannas affected by fire; (11) percentage of grasslands 

affected by fire; and (12) percentage of croplands affected by fire. All the twelve 

variables were calculated in 0.5 degree grid cells using MATLAB and the output were 

further mapped in QGIS. A detailed description of the considered variables is provided 

in the following. 

3.3.1 Mean annual number of fires (MANF, fires·yr-1) 

The modified flood-fill algorithm was applied to identify individual fires in burned 

area maps (Archibald & Roy, 2009). The algorithm is initialized by randomly picking 

one burnt pixel that is inserted in a list L of pixels to be examined. A first burnt pixel set 

as centre pixel is given fireID of 1 then those eight neighbouring pixels recorded within 

8 days of the centre pixel are given identical fireID. Furthermore, they are inserted in a 

list L of spatial positions to be examined, while the current centre pixel is deleted from 

L. Then, if L is not empty, recursively one of the pixels in L is considered as centre 

pixels and the algorithm executes the same operations described above. If L is empty, 

then a new burnt pixel (not previously considered) is randomly picked as centre pixels 

among the available ones, the value of fireID is increased by1, and the algorithm 

repeats the usual operations for the centre pixels as described above. This procedure 

ends when all the burnt pixels have been considered. Count all unique non-zero fireID 

in all years to calculate the number of fires in each grid cell of every 100×100 pixels. 

In each grid cell, the mean annual number of fires is: 
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where y is the number of years and m is the number of months in one year, F is the 

number of fires detected by the modified flood-fill algorithm from MCD64A1 monthly 

maps during the month m in year y. Fire frequency in this study refers to mean annual 

number of fires per grid cell. 

3.3.2 Inter-annual coefficient of variation in annual number of fires (CVNF) 

The inter-annual coefficient of variation in number of fires is defined as the ratio of 

the standard deviation of annual number of fires and the mean annual number of fires. 

In each grid cell, the inter-annual coefficient of variation in number of fires is: 

      

 
 

   
          

  
 

    
 

where F is the annual number of fires detected in year y by summing up the number of 

fires from monthly burned area maps. 

3.3.3 Mean annual area burned (MAAB, km2·yr-1) 

Every pixel with a burn date in a grid cell is counted during all years, then the 

number of these pixels times 0.25 returns the annual area burned in the grid cell in a 

unit of square kilometers, and the function is as following: 

      
            

 
 
 

   
 

where P is the number of fire pixels detected during month m in year y. 

3.3.4 Inter-annual coefficient of variation in annual area burned (CVAB) 

The inter-annual coefficient of variation in area burned is defined as the ratio of the 

standard deviation of annual area burned and the mean annual area burned. 

In each grid cell, the inter-annual coefficient of variation in area burned is: 

      

 
 

   
                 

  
 

    
 

where P is the total number of fire pixels detected in year y. 

3.3.5 Gini index of fire sizes 

Gini index of fire sizes is introduced to characterize the inequality in fire size 

distributions, i.e. to what extent area burned at a given location tends to concentrate 
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on a small number of larger fires, or is distributed through a large number of relatively 

smaller fires. The higher Gini index indicates the larger burned area occurred in less 

times of burning. 

Gini index can be computed following the steps to calculate the Gini Index with the 

Lorenz derivation (Bellù & Liberati, 2006). The function is as following: 

)])(([1 11    iiii

i

ppqqG  

where iq  is the cumulative proportion of burned area and ip is the cumulative 

proportion of times fires occurred.  

3.3.6 Fire radiative power (FRP, mW/m2) 

Fire radiative power data is directly retrieved from active fire data. The 90th 

percentile of fire radiative power value, which was reported as a reasonable predictor 

of burn severity (Heward et al., 2013), and probably provides the best information of 

fireline intensity in distinguishing systems that have the potential to burn at very high 

intensities from those in which there is insufficient fuel to result in high-intensity fires 

(Archibald et al., 2013), is chosen to discriminate fire regimes.   

3.3.7 Fire season duration in days (FSD) 

Fire season duration is defined as the number of days from when 10 % of fire 

pixels were seen in a grid cell to when 90% of the fire pixels were detected (Innes et 

al., 2000). 

3.3.8 Fire pixels in peak month (FPM) 

The peak month in burned area is the month when the maximum fire pixels 

occurred in one month decided by comparing accumulated fire pixels in each month 

during the 14 years. 

3.3.9 Percentage of land cover types affected by fires 

Percentage of land cover types, i.e. forests, savannas, grasslands, croplands, 

affected by fires is calculated as the ratio of fire pixels in each land cover type and the 

total fire pixels in the grid cell. 

3.4 Exploratory factor analysis of fire regime variables 
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To check sampling adequacy of factor analysis, the cell grids along all the twelve 

variables were included in a Kaiser–Meyer–Olkin (KMO) measure (Kaiser & Rice, 

1974) in R. The range of KMO is from 0 to 1 and a value higher 0.5 is desired. A 

Fligner-Killeen test, which is believed most robust against departures from normality 

for homogeneity of variance (Conover et al., 1981) was performed after the 

examination of normality in all variables. The null hypothesis in Fligner-Killeen test is 

that variances in all variables are equal; the alternative hypothesis is that at least two 

of them differ. The p-value of Fligner-Killeen test should be significant.  

The extraction of principal components followed by building a correlation matrix 

containing the principal directions in variables was done in MATLAB to explore the 

structure of standardized variables data and understand the impact factors in the 

further cluster analysis. 

3.5 Cluster analysis of fire regimes 

Before the clustering algorithm was applied, the fire regime variables were 

normalized by mean and standard deviation. To acquire a better understanding on 

clusters, the cluster analysis was performed with principal components as input data. 

The number of principal components was decided by the percentage of variability 

explained by fire regime variables is at least 80%. K-means algorithm was chosen to 

cluster the fire characteristics because different cluster algorithms have provided 

similar results and k-means is simpler. 

The appropriate number of clusters was determined by comparing the sum of 

squared error (SSE) for a number of cluster solutions in R. SSE, which can be seen 

as a global measure of error, is defined as the sum of the squared distance between 

each member of a cluster and its cluster centroid. Thus, an appropriate number of 

clusters could be defined as the number at which the reduction in SSE slows 

dramatically (“elbow”). The significance of the components in each cluster is tested 

from a one-way Multivariate Analysis of Variance (MANOVA) in MATLAB.   
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4. Results 

5141 grid cells are included in the study area but only 3493 grid cells have fire 

records combing active fire counts (3440 grid cells) and burned pixels (2218 grid 

cells), indicating that more than two thirds of China land is affected by wild fires based 

on MODIS active fire and burned area data. 

4.1  Fire regime variables 

4.1.1 Fire frequency and its inter-annual variability 

The MANF distribution shows that the most fire-prone areas are located mainly in 

East-central China, especially in the boundary among the four eastern provinces 

(Henan, Shandong, Anhui and Jiangsu), and Northeast China in Heilongjiang, 

followed by Southwest China in Yunan and Guizhou, and South China in Guangdong, 

then few areas in West China in Xinjiang. Higher fire frequency is observed in the East, 

South, and most west of China, but in the western and central part of China most of 

the land is fire-free based on burned area data (Figure 3 a).  

Low inter-annual coefficient of variation in annual number of fires has been 

observed in the areas where high fire frequency detected, while in the regions where 

fire events occurred casually the stability of fire frequency is very weak, and those 

regions are located mainly in Northeast China in Inner Mongolia, Liaoning and Jilin, 

central-western regions and few areas in southeastern China. Overall, the 

inter-annual variability of fire frequency in most of southern, eastern and northeastern 

China is relatively low (Figure 3 b). 
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a)  

 

 

b)   

 

 

Figure 3 Maps of fire frequency (a) and its inter-annual variability (b) 
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4.1.2 Area burned and its inter-annual variability 

The spatial distribution of MAAB in China is positively correlated with the fire 

frequency. High mean annual burned area happened in the regions where wild fires 

occurred more often, as most fire-prone areas stated in 4.1.1. The rest part of China is 

less prone to fires, or fire free, caused by less annual number of fires, or no fires 

(Figure 4 a). 

Similarly, the inter-annual coefficient of variation in annual area burned shares a 

similar distribution pattern with the inter-annual coefficient of variation in annual 

number of fires, which indicates areas with higher annual area burned are with less 

inter-annual variation, and vice versa (Figure 4 b). 

4.1.3 Inequality in fire frequency and fire size 

In Figure 5, highest Gini index in Northeast China, intensively in Xiao Xing’an 

Mountains (Heilongjiang) and dispersedly in Great Xing’an Mountains (Inner 

Mongolia), and few areas in East and most west of China, shows that in those areas 

larger fires happened in less number of fires. Relatively lower Gini index in most part 

of southern China indicates that smaller fire size occurred in higher number of fires. 

Zero Gini index indicates that in some areas where only one fire appeared during the 

14 years, and some other areas where fire size is equal in a very few number of fires 

(<=3).  

4.1.4 Fire intensity 

Fire radiative power retrieved from active fire data presents a map of larger fire 

affected areas in China (Figure 6). Extremely high fire radiative power is detected 

mostly in Northeast China in Great Xing’an Mountains and Xiao Xing’an Mountains 

(Inner Mongolia and Heilongjiang) covered with forests, and Southwest China in 

Hengduan Mountains (Sichuan and Xizang) covered with grasslands. Higher fire 

radiative power in Southeast China other than the rest of China land is also found. 

Those lands are covered with forests and savannas. In contrast, low fire radiative 

power exists in lowlands in eastern and part of central China, where cropland is the 

predominant land cover type.
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a)  

 

b)  

 

 

Figure 4 Maps of annual burned area (a) and its inter-annual variability (b) 
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Figure 5 Map of fire frequency-size inequality from Gini index 

 

 

 

 

Figure 6 Map of fire intensity from the 90th percentile of fire radiative power 
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4.1.5 Fire seasonality 

In Figure 7 a, the fire season duration is very long in South China especially in the 

boundary of four provinces (Guangdong, Hunan, Jiangxi, and Fujian), which lasts 

more than 9 months, followed by the fire season duration in Northeast China in 

Heilongjiang, which lasts more than half of a year. The fire season in Southwest China 

is with less than 3 months, while in part of East and Northeast China, and central and 

western China the fire season is shorter than one month.  

The peak month occurred primarily in winter season in southern China, in spring 

and autumn season in northeastern and western China and in summer and autumn 

season in eastern China (Figure 7 b). The peak season is generally not in winter in 

northern areas and not in summer in southern areas. Much more fire pixels in peak 

month accumulated in the areas where are with higher fire frequency and larger 

burned area in all 14 years, and vice versa (Figure 7 c). 

4.1.6 Land cover types affected by fires 

    The percentage of land cover types affected by wild fires is determined by the 

land cover of China. Forest and savanna areas are mostly affected by fires in 

southern and northeastern China and partly in eastern China (Figure 8 a, b). 

Grasslands are affected by fires mainly in Great Xing’an Mountains and Xiao Xing’an 

Mountains in northeastern China, Hengduan Mountains in southwestern China and 

Tianshan in western China (Figure 8 c). Croplands are affected by fires primarily in 

lowlands in East and Northeast China, and few areas in western China (Figure 8 d).
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Figure 7 Maps of fire seasonality from fire season duration (a), peak month (b) and its 

burned pixels (c) 
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c)   

 

 

d)   

 

 

Figure 8 Maps of land cover types affected by fires from percentage of forests (a), 

savannas (b), grasslands (c), and croplands (d) affected 
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4.2  Factor analysis of fire regime variables 

 Figure 9 shows the data distribution of fire regime variables. The range of four 

variables, i.e. mean annual number of fires, mean annual area burned, fire radiative 

power, and fire pixels in peak month, is extremely high in very few numbers, indicating 

in a few regions the fire frequency, burned area and fire intensity are much higher than 

most areas in China. Most of the variables data are not normally distributed. 

 Table 1 shows the KMO and Fligner-Killeen test results. The KMO value indicates 

that the fire regime variables data are suitable for the application of factor analysis. 

Because the result of the Fligner-Killeen test of homogeneity of variances is 

significant, the hypothesis that all of the variances are equal can be rejected. 

 

 

Table 1 Measures of suitability of data for factor analysis: Kaiser-Meyer-Olkin (KMO) 

and Fligner-Killeen test 

KMO Fligner-Killeen test 

  χ² d.f. p 

0.697 5278.6 11 <0.0001 

 

 

 The principal component analysis explained 82.51% of the original variance using 

the first five components and those five components were retained as they 

cumulatively explain at least 80% of variation (Table 2).  

The communality for a given variable can be interpreted as the proportion of 

variation in that variable explained by the five factors. The communalities or 

proportion of variability extracted from most of the fire regime variables with principal 

component analyses are very high, except fire radiative power and percentage 

savannas affected by fires both show a relatively lower value below 70% (Figure 10). 

This result means that the variables are well explained by the components. 
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Figure 9 The box-plot distribution in values of fire regime variables 

  

1: Mean annual number of fires; 2: Inter-annual coefficient of variance in annual number of 

fires; 3: Mean annual area burned; 4: Inter-annual coefficient of variance in annual area 

burned; 5: Gini index of fire sizes; 6: 90
th
 percentile of fire radiative power; 7: Fire season 

duration; 8: Fire pixels in peak month; 9: Percentage forests affected by fires; 10: Percentage 

savannas affected by fires; 11: Percentage grasslands affected by fires; 12: Percentage 

croplands affected by fires. 
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Table 2 Results of the principal component analysis 

Components Eigenvalues 

  Total Percentage of variance  Cumulative % 

1 93.367  31.194  31.194  

2 61.553  20.565  51.758  

3 37.520  12.535  64.294  

4 30.926  10.332  74.626  

5 23.588  7.881  82.507  

6 19.729  6.591  89.098  

7 15.078  5.037  94.135  

8 8.369  2.796  96.932  

9 5.073  1.695  98.626  

10 2.899  0.968  99.595  

11 0.872  0.291  99.886  

12 0.342  0.114  100.000  

 

 

 The correlation among fire regime variables and the chosen components are 

shown in Table 3. The higher absolute values in the table indicate stronger correlation 

between the variables and the principal components. PC 1 and PC 2 are both more 

strongly correlated with the fire regime variables associated with burned area and 

number of fires, but PC 1 has a higher correlation with the distribution of fire size in 

number of fires and annual burned area, whereas PC 2 is more correlated with the 

inter-annual variability of burned area and number of fires. There are different higher 

correlations among principal components and land cover related variables (PC 3 with 

savanna, grassland and forest, PC 4 with cropland and forest, and PC 5 with 

grassland and forest). PC 3 and PC 5 are both more correlated with fire season 

duration but in the opposite directions (-0.39 and 0.54). PC 4 is also more strongly 

corrected with fire intensity (0.62). However, those correlations are not very strong to 

determine the principal components with single fire regime variables. 
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Figure 10 Percentage of variability explained by fire regime variables 

 

1: Mean annual number of fires; 2: Inter-annual coefficient of variance in annual number of 

fires; 3: Mean annual area burned; 4: Inter-annual coefficient of variance in annual area 

burned; 5: Gini index of fire sizes; 6: 90
th
 percentile of fire radiative power; 7: Fire season 

duration; 8: Fire pixels in peak month; 9: Percentage forests affected by fires; 10: Percentage 

savannas affected by fires; 11: Percentage grasslands affected by fires; 12: Percentage 

croplands affected by fires. 
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Table 3 Correlation among fire regime variables and principal components 

Fire regime variables PC 1 PC 2 PC 3 PC 4 PC 5 

1. MANF -0.38  0.34  -0.01  0.03  -0.02  

2. CVNF -0.27  -0.45  0.27  -0.06  -0.27  

3. MAAB -0.40  0.33  0.00  0.20  -0.05  

4. CVAB -0.30  -0.44  0.25  -0.06  -0.24  

5. Gini index -0.43  -0.08  -0.10  -0.08  0.20  

6. FRP -0.10  -0.11  0.05  0.62  0.26  

7. FSD -0.21  -0.20  -0.39  -0.25  0.54  

8. FPM -0.39  0.34  0.03  0.21  -0.10  

9. % forests affected -0.13  -0.31  -0.37  0.31  -0.42  

10. % savannas affected -0.13  -0.24  -0.52  0.03  0.13  

11. % grasslands affected -0.05  -0.22  0.51  0.19  0.52  

12. % croplands affected -0.31  0.09  0.14  -0.56  -0.02  

 

4.3  Fire regime classification 

According to the elbow method, the scree plot in Figure 11 shows that the most 

appropriate number of clusters should range between 2 and 4. The results obtained in 

our simulations show that two or three clusters are not enough to differentiate fire 

regimes in China before 4 as the number of clusters was chosen. Therefore, four fire 

regimes are revealed in China. 

The spatial distribution of fire regimes M, R, B, and G in China are showed in 

color magenta, red, blue and green in Figure 12. The comparisons among fire 

regimes and variables are shown in Table 4, where fire pattern is described in area 

burned and land cover. Figure 13 shows the four cluster centroids resulting from 

k-means analysis based on the five principal components. These clusters differ 

significantly according to a MANOVA. 

Fire regime M covers the most of central China (Inner Mongolia, Ningxia and 

Xizang, and Gansu, Qinghai, Shannxi, Sichuan, Chongqing, Hubei, and Guizhou), 

and extends to western (Xijiang), northeastern (mainly in Jilin), southern China 

(Hainan and Taiwan islands), where no fires detected by burned area data, which is 
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around 36.5% of fire affected area in China. Since the fire characteristics except fire 

intensity are defined by burned area data, in those regions with fire regime M there is 

not a clear fire pattern showed in any of the fire regime descriptors. The fire intensity 

is low in central China and most of other regions in cluster M, but exhibits very high 

values in Hengduan Mountains regions (Figure 6).  

Fire regime R represents most fire prone areas, exists mainly in the boundary 

area among Shandong, Jiangsu, Henan and Anhui in East China and the boundary 

area between Inner Mongolia and Heilongjiang in Northeast China. It is the smallest 

category and includes, only around 3.3% of the fire grid cells. Very few areas cover 

with fire regime R sparsely in Northeast, East, Southwest and West China. Those 

areas are clustered because of high MAAB and FPM. 

The rest of China shows low MAAB and FPM based on burned area data and is 

divided into two regimes by land cover types. Fire regime B, taking up about 38.1% of 

fire affected area, exists predominantly in cropland and grassland in Northeast (Inner 

Mongolia, Heilongjiang, Jilin, and Liaoning), North (Hebei, Shanxi, Shandong, Henan), 

East (Jiangsu, Anhui, Zhejiang, and Jiangxi), central (a larger area in Hubei and 

fragmented areas in other regions) and West (Xinjiang) China. Fire regime G is found 

in northern (Inner Mongolia and Heilongjiang) and southern China (Yunan, Guizhou, 

Hunan, Jiangxi, Zhejiang, Fujian, Guangdong and Guangxi) mainly covered with 

forest and savannas, and includes approximately 22.1% of the fire grid cells. 

  Figure 14 concludes the classification of fire regimes in China. Fire regime M 

differs from the other three fire regimes dues to the using of fire radiative power from 

active fire data as a fire regime variable. Mean annual area burned is the main fire 

characteristic differentiates fire regime R from the rest of two fire regimes. However, 

comparing other fire characteristics including inter-annual variability, intensity and 

seasonality listed in Table 4, it is difficult to show distinct patterns in each fire regime. 
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Figure 11 Scree plot of within groups sum of squares by number of clusters 
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e)  

 

 

Figure 12 Maps of fire regimes (a), fire regime M (b), fire regime R (c), fire regime B 

(d), and fire regime G (e) 

 



Results 

38 
 

 

 

 

 

   Figure 13 Cluster centroids of fire regimes measured by five principal components 
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Figure 14 Classification of fire regimes 
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Table 4 Comparisons among five regimes in China 

Fire regimes   M R B G 

Fire pattern 
 

Unknown HCF LCG LFS 

Number of cells 
 

1274 117 1330 772 

Main location 
 

Central 
Northeast; 

East 

Northeast; 

East; 

West 

South; 

North  

 

Comparisons in 

predominant fire 

characteristics  

Frequency NA High Low Low 

Burned area NA High Low Low 

Variability NA High/Low High/Low High/Low 

Intensity High/Low High/Low Low High 

Fire season NA Short Long/Short Long/Short 

Land cover 

affected 
NA 

Cropland; 

Forest 

Cropland; 

Grassland 

Forest; 

Savanna 

HCF: High annual and peak month area burned, Cropland and Forest; LCG: Low annual and 

peak month area burned, Cropland and Grassland; LFS: Low annual and peak month area 

burned, Forest and Savanna. 
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5. Discussion 

5.1 Remote sensing of fires 

Vegetation burning is a global scale environmental phenomenon, in which the 

large extent of fire-affected areas and the low accessibility of many key fire regions 

make remote sensing an indispensable fire research and monitoring tool. Various 

space and airborne sensors have been applied in assessing characteristics of active 

fires and post-fire ecological effects, and numerous remote sensing tools and 

techniques have been employed to quantify and monitor fire-related processes that 

cause change in soil and vegetation (Lentile et al., 2006). The utility of satellite data 

for mapping fire-affected areas and characterizing the properties of wildfires is an 

area of active research, nevertheless, the accuracy and consistency of those products 

have not been definitively demonstrated and the results of global fire characteristics 

concluded from remotely sensed data have not been validated widely (Roy et al., 

2013). 

MODIS active fire and burned area products were both applied in the 

computation of fire regime variables in this study. However, their correlation during the 

study period in either counts of detections (Figure 15 a) or days of detections (Figure 

15 b) is very low. Although the fluctuations of active fire counts and burned pixels 

during the 14 years show a similar pattern, higher frequency of active fire counts were 

detected obviously during most of the days of year (Figure 16). This can be explained 

by their differences in the fire detection algorithms and the spatial resolutions (Table 5). 

The combined use of such two datasets has assisted in the identification of fire 

regimes in China. 
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b)   

 

 

 

Figure 15 Correlation in the count of points (a) and the mean of day of year values (b) 

within the same geo-grid between active fire counts and burned area pixels 

(2001-2014, China) 
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Figure 16 Frequency of active fire counts and burned pixels in day of year 

(2001-2014, China) 

 

 

Table 5 Comparisons between active fire data and burned area data used 

  Active fire data Burned area data 

MODIS products MCD14ML MCD64A1 

Spatial resolution (km) 1.0  0.5  

Detection basis Temperature Surface reflectance 

Spectral bands (μm) 4.0, 11.0, 12.0 0.65, 1.2, 2.1 

Minimum detectable size (ha) ~ 0.12 ~ 120 

Limitation Large fires Small fires 

Reference Giglio et al. 2003 Giglio et al. 2009 
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Active burning fires can be differentiated by detecting the elevated energy 

released relative to their non-burning surroundings at middle-infrared to thermal 

wavelengths (i.e. 3.6 - 12μm), which depends on the temperature even when the fire 

covers small fractions of the pixel (Lentile et al., 2006; Roy et al., 2013). Unfortunately, 

some issues are related to the use of this fire detection algorithm, specifically, it is 

affected by the following limitations. Only pixels containing active fires at the time of 

satellite overpass are identified. Fires that move quickly across the landscape relative 

to the satellite observation frequency will not be detected. The detection of active fires 

can also be missed due to the obstacles such as cloud or thick smoke obscuration 

and overstory vegetation. Certain fires may be too small or cool to be detected.  

Comparatively, post-fire burned area is detected from a drastic reduction in 

visible-to-near-infrared surface reflectance (i.e. 0.4 - 1.3μm) associated with the 

charring and removal of vegetation, accompanied by a rise in short wave infrared 

reflectance (i.e. 1.6 - 2.5μm) and brightness temperatures, which is attributed to the 

combined effects of increased soil exposure, increased radiation absorption by 

charred vegetation, and decreased evapotranspiration relative to the pre-fire green 

vegetation (Lentile et al., 2006). But some limitations of this fire detection algorithm 

should be considered. Tree canopy or cloud cover can obscure the post-burn, top-of 

atmosphere radiometric signal of burns from surface fires. The algorithm can confuse 

recently cleared, unburned forest patches with burned areas in case of tropics 

undergoing deforestation, especially when the deforestation slash is piled within the 

clearing and subsequently burned after a short drying period (Giglio et al., 2009). 

Based on above fire detection algorithms, both active fire and burned area data 

have their advantages and disadvantages. Comparing with the minimum detectable 

size of a burned area, which is very much larger than the typical size of agriculture 

waste and deforestation burns, the minimum detectable size of an active fire can be 

1000 times smaller (Giglio et al., 2009). However, with active fire detections from 

polar-orbiting satellites it is difficult to capture large fires: indeed, they typically 

underestimate the temporal dynamics of fire, and the spatial extent of fire-affected 

areas where the fire progresses rapidly across the landscape (Roy et al., 2013). 
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Burned area products are more reliable in detecting medium and large fires. In this 

study, active fire algorithm detected ~67% of land affected by wildfires in China, which 

is ~24% more than the fire-affected area detected by burned area algorithm. These 

exclusive grid cells in burned area data are identified in fire regime M, highlighting 

central China, where probably those types of fires occurred: small and less frequent 

fires; or surface fires in forests; or burned area recovered quickly in grasslands and 

croplands. These areas were excluded in previous global studies because they only 

considered the areas overlapped by the availability of remotely sensed datasets 

(Archibald et al., 2013) or discarded the active fire data below their threshold 

(Chuvieco et al., 2008). 

5.2 Characteristics of fires and their potential drivers 

 The control of fires at different temporal spatial scales is driven by different 

environmental factors, and climate, landscape and vegetation are the dominant 

drivers of regional fire regime in decades. Moreover, recently the discussion on the 

role of anthropogenic factors (e.g. population density, land-use practices, livestock 

grazing, and road density) in fire regime has increased significantly (Archibald et al., 

2009; Le Page et al., 2010; Lehsten et al., 2010; Pausas & Fernández-Muñoz, 2012; 

Zumbrunnen et al., 2012; Knorr et al., 2014). Forest fires and agricultural burning are 

mostly caused by human activities in China. The characteristics of fires such as 

annual area burned and seasonality are expected to be greatly influenced by human 

activities through fire ignition, fire spread and fire extinction, which also indirectly 

impact fire size and intensity, comprehensively or selectively coupling with the impact 

of dominant drivers in different regions in China. 

 The HCF fire pattern in fire regime R indicates that significant fire activity 

occurred mostly in Northeastern and Eastern China in croplands, with a lower level of 

inter-annual variability. In these most fire-prone regions, it is expected that fire activity 

is caused by human activities. But the fire ignition source of a small fraction of high 

MAAB in Great Xing’an Mountains and Xiao Xing’an Mountains forest areas with 
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higher inter-annual variability in HCF pattern area is more likely to be triggered by 

lighting strokes in spring. The increasing forest fire danger in this region could have 

resulted from the increase in the maximum temperature and the decrease in 

precipitation and humidity (Niu & Zhai, 2012). The higher Gini index in this proportion 

of forest fires indicates that more large fires happened in this region where a certain 

environmental condition tends to support fire spread.  

Fires occurred in LCG (fire regime B) and LFS (fire regime G) areas, where 

MAAB and FPM are both relatively lower and inter-annual variability in fire frequency 

and burned area highlights differently in different regions and vegetation types. The 

forest fires have mainly low inter-annual variation of fire activity in southern regions 

but mainly high inter-annual variation of fire activity in northern regions, indicating 

different causes of fires in these two regions. Cropland fires show relatively low 

inter-annual variability whereas grassland fires show relatively high inter-annual 

variability. These fire regimes are also supposed to largely link with climatic and 

anthropogenic factors. A positive correlation between burned area in forests and 

temperature was found in most regions in China (Lv, 2011). Liu et al. (2012) showed 

that the predicted change in overall fire occurrence density is positively related to the 

degree of temperature and precipitation change, but the spatial pattern of change is 

expected to vary spatially according to proximity to human ignition sources. 

 The seasonality of cropland fires is with peak month mostly in spring and autumn 

and longer fire season duration in Northeast China Plain and it is with peak month 

also in summer (concentrated in East China in June) and shorter fire season duration 

in North China Plain, probably due to different agricultural practices. The fire season 

duration of forest and savanna fires in LFS pattern shows a distinct regional pattern. It 

reveals a very short fire season in Northeast China, which normally ends within one 

month, and a longer fire season in most of Southwest China (less than 3 months), but 

a very long fire season in South China and part of Southeast China (more than 9 

months). However, savanna fires in southern Guizhou (Southwest China) last less 

than one month with a peak in February. The peak month of forest and savanna fires 

mostly occurs in non-winter seasons in Northeast China, and non-summer seasons in 
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southern China. Similarly, the peak month of grassland fires in northern areas (Inner 

Mongolia and Xijiang) is not typically in winter and on the contrary winter is the peak 

season of grassland fires in Southwest China (Sichuan). Grassland fires are more 

likely last less than one month in western China. 

The seasonality of vegetation fires in China is controlled by a combination of fuel 

condition, climate and human activities. Fire sensitivity in dry season varies in fine or 

dead vegetation (grasslands, savannas, croplands) which desiccate rapidly and prone 

to early season fires, and live and wooded vegetation (forests) which has slower 

moisture dynamic and likely to burn late in dry season (Le Page et al., 2010). Climate 

variables play a very important role in fire season duration in China. Researchers in 

China have found that forest fires least likely happen when monthly average 

temperature below -10 °C or higher 15 °C and most likely happen if monthly average 

temperature between 0 to 10 °C, and when the monthly average precipitation reaches 

above 100 mm or annual precipitation is higher than 1500 mm and well distributed, 

forest fires are also unlikely to occur (Sun et al., 2014). Therefore, the peak month of 

forest fires hardly occur in winter in northern China when the low temperature restrict 

fire occurrences and is not likely to occur in summer in southern China when the high 

precipitation reduces the burning probability. The long fire season duration in South 

China is expected to be mainly caused by human activities. It was found that 

temperature positively correlate with burned forest area, while precipitation negatively 

correlated with burned forest area in South China (Lv, 2011). However, forest fires in 

this region were largely ignited artificially from agricultural practices, because fire is a 

common agricultural tool in small scale family farms and most of the farms and 

plantations have a staggered distribution, agricultural and negligent uses of fire have 

become the major sources for forest fires (Tian et al., 2013). 

 The frequency-size inequality of fires derived from Gini index in China displays a 

pattern of more large fires within less number of fires in north and more small fires 

within more number of fires in south, particularly in forests. Fuel, topography, weather, 

land use management and fire suppression efforts tend to have significant 

contribution to the inequality in fire size distributions through controlling fire behavior. 
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Vegetation flammability and continuality with characteristics of climate (e.g. strong 

winds and low humidity) and landscape (e.g. up slope and lower elevation) that favor 

fire spread can provide advantages for large fires. Removing fuel amount by thinning 

or using prescribed fires can prevent large fires if those large fires are a direct 

consequence of fuel accumulation, in which case, fire suppression efforts on small 

and frequent fires will lead to few larger fires.  

A study on statistical models of the size distribution of lightning-caused wildfires in 

the boreal mixed wood forests in Canada showed that the expected size of a fire is 

positively related to the abundance of pine forest in the vicinity of the point of 

detection, and negatively related to the abundance of recently logged or burnt areas 

(Cumming, 2001). Another simulation modeling on the effect of fire-exclusion and 

prescribed fire on wildfire size in Mediterranean ecosystems provided some 

information that higher fire-fighting capacities resulted in a slightly higher proportion of 

large fires while the total amount and proportion of large fires decreased as the 

prescribed burning intensity increased (Piñol et al., 2005). Moreover, Chang et al. 

(2007) simulated the long-term forest landscape responses to fire exclusion in the 

Great Xing’an Mountains by using their LANDIS model and showed that fire exclusion 

can lead to catastrophic fires with return intervals ranging from 50 to 120 years. These 

models could help explain the influence factors of large fires, such as large forest 

areas and intensive fire exclusion, in boreal mixed wood forests in Northeast China. 

The fires were ignited primarily by lightning, but forest harvesting and fire suppression 

have altered fire regimes from frequent and low intensity surface fires mixed with 

infrequent stand-replacing fires, with fire return interval ranged from 30 to 120 years, 

to infrequent but more intense, with a fire return interval of more than 500 years (Liu et 

al., 2012).  

On the contrary, more small and frequent fires occurred in southern mixed forests 

and evergreen woodlands. This happens to coincide with the finding that evergreen 

oak woodlands in Portugal exhibit a distinct pattern with fire avoidance increasing as 

fire size increasing (Barros & Pereira, 2014). Generally, large fires are not significantly 

selective for land cover while small fires are unequivocally selective (Nunes et al., 
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2005). Larger fires are also detected in most fire prone regions of croplands in East 

China and grasslands in Inner Mongolia and West China.  

 Fire intensity defined by the 90th percentile of MODIS fire radiative power shows 

very high values in Northeast (Great Xing’an Mountains and Xiao Xing’an Mountains) 

and Southwest (Hengduan Mountains) China. Fire intensity and fire or burn severity 

have anecdotally been considered to be related, with more intense fires generally 

expected to cause more severe post-fire effects, and the 90th percentile of MODIS fire 

radiative power could be used to predict potential long-term negative ecological 

effects for individual fires (Heward et al., 2013). Wooster et al. (2005) found that fire 

radiative energy (the temporal integral of FRP) and fuel mass combusted have a 

highly significant linear relationship, and FRP is well related to combustion rate.  

Grassland fires with larger available fuel loads tend to have greater combustion 

completeness and release a greater proportion of their total theoretical heat yield 

(Wooster et al., 2005), as in the case of grassland fires in Hengduan Mountains. In the 

case of forest fires (e.g. forest fires in Great Xing’an Mountains and Xiao Xing’an 

Mountains), the differences in dominant fire type would contribute to the differences in 

fire intensity and mean fuel consumption, which was found in the study of boreal 

forest fires in Russia and North America. North American fires have higher mean 

intensities, increasing in proportion to percentage tree cover, characteristics indicating 

likely crown fire dominance; Russian fires have lower mean intensities, independent 

of percentage tree cover, characteristics more indicative of surface fire activity 

(Wooster & Zhang, 2004).  

Overall, environmental (vegetation, landscape, and climate) factors that help 

increase the amount of combustible materials and reduce the moisture of fuel loads 

will increase the combustion completeness, hence increase fire intensity. Low 90th 

percentile of FRP values in croplands probably resulted from the less amount of fuel 

mass comparing to other land cover types. However, high altitude and complex 

geomorphological characteristics may assist in increasing smoke plume heights and 

then contributing to the higher fire intensity (Martin et al., 2010), as in the cases of 

Hengduan Mountains, Great Xing’an Mountains and Xiao Xing’an Mountains.  
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5.3 Cluster analysis of fire regimes 

 Cluster analysis was implemented to group the grid cells data based on principal 

components by using k-means algorithm, to achieve a better understanding in fire 

regimes in China. The estimation of fire regimes are influenced by many factors 

during the exploratory data process, including sample size, selected fire regime 

variables, chosen standardization method, and the selection of number of principal 

components and number of clusters. Also, different clustering algorithms and different 

criteria can be applied in order to measure how ‘close’ or ‘similar’ among the data. 

However, there is not a defined answer for ‘optimal’ solution in clustering. 

Consequently, the results of cluster analysis depends on certain specific choices of 

the user, nevertheless, the whole procedure can provide reliable results if the 

variability of its results are checked under different working conditions and its 

outcomes are critically interpreted in order to avoid physically meaningless results. 

 K-means clustering as the most popular non-hierarchical clustering technique has 

often been criticized due to the high likelihood of obtaining a locally optimal solution or 

because it is not directly derived from statistical distribution theory, however, it 

efficiently deals with high dimensional data and it has been found to recover true 

cluster structure well (Steinley, 2006, 2008). Several suggestions were provided to 

obtain more robust k-means results regarding to local optima issue: elaborating 

approaches for determining starting values; choosing solution that minimizes trace 

over the repeated runs; combining information regarding the cluster problem (number 

of clusters, number of variables, sample size, etc.) with the distribution of the local 

optima created from the multiple initializations to determine the quality of a cluster 

solution; a so-called ‘stability analysis’ that can identify the most stable solution and 

suggest the number of clusters and empirically derive cluster membership 

probabilities (Everitt et al., 2011). An in depth of analysis of such strategies is out of 

the scope of this thesis. Instead, thanks to its simplicity, efficiency and more 

applicable in the variables which are measured in continuous scale and large number 

of grid cells, k-means clustering has been employed in this study to achieve a 
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reasonable and stable solution by using default algorithm in MATLAB (stated below). 

 The squared Euclidean distance measure, and the k-means++ algorithm for 

cluster center initialization (default algorithm in MATLAB), which was demonstrated 

that it achieves faster convergence to a lower sum of within-cluster, sum-of-squares 

point-to-cluster-centroid distances than Lloyd's algorithm (Arthur & Vassilvitskii, 2007), 

were used to yield cluster results close to optimal solutions. Several steps during the 

exploratory data process were followed to determine the quality and the robustness of 

the computed cluster solution. The method of variable normalization, which support 

that the variables are best explained by the components, was applied. Three methods 

of variable normalization were: standardizing by the range, z-score and standardizing 

by the maximum value. Although standardizing by the range was recommended to be 

the most effective method (Steinley, 2006), this method and standardizing by the 

maximum value both failed to provide the best solution for high proportion of variability 

extracted from the fire regime variables. Furthermore, consider a method to estimate 

number of clusters practically. Three types of methods: algorithmic methods, 

graphical methods, and formulaic methods, were discussed in Steinley (2006): the 

graphical methods, for example, a scree plot that shows the monotonic decreasing 

relationship between SSE and number of clusters, were least advocated because it is 

highly subjective. However, its simplicity is preferred, and the obtained results are in 

accordance with other considerations in the study. Finally, repeatedly run the 

clustering algorithm with different schemes combing standardization methods, 

number of principal components, and number of clusters, and determine a rational 

solution according to the overall performance. The results of first run of the 

determined scheme were retained. 

 The fire regimes results should not be expected as absolute and exclusive: 

indeed, the results of the cluster analysis procedure depends on the considered 

selection of fire regime variables. We postulate that all the variables selected in this 

study are meaningful and equivalently important, and the clustering results on the 

basis of these variables are reliable and comparable. Unavoidably, fire regime M 

based on the differences between burned area data and active fire data is limitedly 
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understood, and the more number of land cover variables added more weights on 

land cover variables which further helped differentiate fire regime B and G. In 

conclusion, the proposed fire regimes need to be interpreted critically given some 

uncertainty in remotely sensed data and cluster analysis. 

5.4 Comparisons and implications of fire regimes 

 Detailed and valid field data on wildfire history are restrictedly accessible in China, 

and the use of remotely sensed data has become necessary in understanding fire 

regimes at national scale. Although certain separated data sources on forest and 

grassland fires and crop residue burning in the field are available in 

government-generated statistical data in province level, the discrepancy between 

statistics and satellite data can be remarkable, mostly because the statistical data is 

understated commonly due to some political and technical reasons (Yan et al., 2006). 

Forest fire statistics was applied often in forest fire regime in some provinces but 

highly concentrated in Heilongjiang (Hu & Jin, 2002; Jin & Hu, 2002). Few studies 

were carried out on distribution characteristics and the influence factors of forest fires 

in China by using satellite data (Tian et al., 2013). Krawchuk and Moritz (2009) has 

inferred historical fire regimes for China by quantifying the relationship between 

reference fire regime classes adopted by the LANDFIRE initiative in the United States 

and a global climate data set using generalized additive models. Comparing with 

previous studies, we expect to provide additional helpful information and a new 

different perspective to reveal fire regimes in China and support fire and land 

management decisions. 

 Despite the differences in temporal extent and context of the MODIS data and the 

modelled predictions in Krawchuk and Moritz (2009), similar fire regimes were 

mapped in both studies in western, northeastern and southwestern China (Table 6). 

Nevertheless, a 35-200-year return interval burning arid shrublands in western China 

contrasts relatively fire free regions in this study, and they also did not predict clear fire 

regimes in southeastern and southern China, where forest and savanna fires detected 
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by satellite data. These discrepancies are expected as the results of recent human 

activities, which accord with the forest fire studies in China showing anthropogenic 

ignition of forest fires is closely related to the residential distribution and the 

production mode (Liu et al., 2012; Tian et al., 2013). In a global perspective, remotely 

sensed fire regimes in China were typically characterized as low to medium fire 

activity, low variability and intensity, fairly small fires, and commonly with long duration 

(Chuvieco et al., 2008; Archibald et al., 2013), comparing with other fire active 

regions.  

 

Table 6 Similarity in fire regimes between Krawchuk and Moritz (2009) and this study 

Fire regimes in 

Krawchuk and 

Moritz (2009) 

Fire regimes in 

this study 
Location Similarity 

R200+desert Fire free Western China Mostly fire-free 

R0-35grass Fire regime B Northeastern China Grassland fires, frequent 

R0-35forest Fire regime G Southwestern China Forest fires, frequent 

R200+forest Fire regime G Southwestern China Forest fires 

R35-200forest Fire regime G Northeastern China Forest fires, less frequent 

 

Although the relatively short-term archive of satellite data make it lack the 

information needed to gain an understanding of the long-term regime of fire in China’s 

ecosystems, it still can continuously capture the current fire activity in regional and 

global scales, which should be valued more especially in China, because the recent 

fast socioeconomic development accompany with climate change might trigger 

dramatic changes included increased fire activity and the study of recent fire regimes 

could provide direct feedbacks for further natural resources management. Much 

higher fire activity in part of Northeast and East China in forest and lowlands 

highlighted in fire regime R, for example, could imply higher needs for forest fire 

prevention and developing sound fire management policy. The unknown fire regime M 

should be further investigated to have more comprehensive understanding on fire role 

in China’s ecosystems. 
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6. Conclusions 

 This study reveals fire characteristics (i.e. fire frequency, burned area, variability, 

frequency-size inequality, seasonality and intensity) in China and discusses the 

possible drivers of their respective spatial distributions. Four fire regimes were further 

mapped on the basis of fire characteristics using a k-means clustering algorithm, 

which need to be interpreted critically given the influence factors of cluster analysis. 

The study aims to provide a new different perspective in understanding fire regime in 

China’s ecological systems and further support in the decisions making of natural 

resources management. 

 The most fire prone areas (fire regime R) exist mainly in forests and lowlands in 

Northeast and East China with high fire frequency and area burned, and low 

inter-annual variability in cropland fires but relatively high inter-annual variability in 

forest fires, indicating different causes in fires (human caused vs lightning). The 

western China exhibits mostly fire free in areas adjacent to the Taklamakan Desert in 

the west of China, and where Inner Mongolia meets Mongolia at its western border in 

the central north of China. Small fires in central China, western China and part of 

Northeast China were undetectable in satellite burned area data and remain unclear 

in the fire regime (fire regime M). The relatively lower fire activity in the rest parts of 

China were clustered to two groups according to the similarity and vicinity of 

vegetation types, which show different inter-annual variation in fire frequency and 

annual area burned in different land cover types and regions. Inter-annual variability is 

mainly high in grassland fires but low in cropland fires (fire regime B). Forest fires 

show mainly high inter-annual variability in northern regions but low inter-annual 

variability in southern regions (fire regime G).  

Fire season duration of forest fires is very long in southern and part of Southeast 

China (more than 9 months) but much shorter in southwestern China (less than 3 

months) and very short in northeastern China (less than one month). Peak months of 
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fires occur in non-winter seasons in the north but in non-summer seasons in the south. 

Cropland fires last relatively long in northeastern China (less than 9 months) and 

mainly peak in spring (April) but short in eastern China (less than 6 months) and 

mostly peak in summer (June). Large fires can occur in all vegetation types, while 

larger and less frequent forest fires mostly happen in the north and in the south the 

forest fires are relatively small and more frequent. Fire intensity based on the 90th 

percentile of fire radiative power is very high in northern China (Great Xing’an and 

Xiao Xing’an Mountains) and southwestern China (Hengduan Mountains), but very 

low in lowlands in eastern and south-central China, which is possibly connected with 

the altitude. Most of fires are caused by human in China, and the spatial and temporal 

distribution of fire characteristics are the outcome of a long-term interaction of 

dominant drivers in fire regimes (vegetation, climate, and landscape) and the 

influence of human activity.  

 Further research on understanding the fire regime in central China and its 

possible main drivers is recommended in the background of recent changes in 

climatic and management conditions, even active fires in those regions may be 

considered insignificant previously. The potential topics to discuss include 

comparisons in mapping fire regimes by using active fire data and burned area data 

separately, or combing more remotely sensed datasets, correlation among fire 

regimes variables and influential ecological and anthropogenic factors, and expanding 

variables and algorithms in cluster analysis.
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