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ABSTRACT 

The continuous collection of forest data is crucial for a sustainable forest management. 
However, forest inventory data collection is time consuming and expensive. Remotely 
sensed data appear as an alternative to the field inventory. Despite the general 
knowledge of advantages satellite and airborne remote sensed data present, they 
possess a limitation in the application of forest management inventories and small-scale 
forest monitoring where a number of forest stand structural, compositional variables must 
be assessed at extremely fine spatial scales. The unmanned aerial vehicles (UAV) 
imagery could be used to overcome the limitation the satellite/airborne remote sensing 
presents.  

This research explored the capability of a UAV, namely the eBee drone, imagery to map 
forest canopy gaps and derive some forest parameters such as, biodiversity indices, 
habitat trees, basal area, canopy height, deadwood, etc. using handy techniques in a test 
area of 240 ha of natural reserve of Lago di Vico in Central Italy. We used correlation and 
linear regression techniques to explore relationships between gaps patch metrics on one 
side and forest features on the other.   

The mapping revealed that forest shaded canopy gaps can be faithfully extracted from 
UAV true color images. Estimation of forest features using canopy gaps as a proxy led to 
disparate results. Best results were obtained for understorey data with R2 going up to 0.87 
and intermediate results were observed in living trees data with R2 of over 0.74. The 
approach failed to estimate the deadwood. Additionally, from the three forest types 
available in the study area, best results were observed in mixed forest while Fagus forest 
had the poorest ones and Quercus forest displayed intermediate results. UAV true color 
remote sensing presents a high potential for forest inventory, forest monitoring, and 
biodiversity assessment. 

 

Keywords: Drones, high resolution images, forest gaps, diversity, habitat trees, 
spatialization, UAS 
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EXTENDED ABSTRACT 

The continuous collection of forest data is crucial for a sustainable forest management. 
However, forest inventory data collection is time consuming and expensive. Remotely 
sensed data appear as an alternative to the field inventory. Despite the general 
knowledge of advantages satellite and airborne remote sensed data present, they present 
a limitation in the application of forest management inventories and small-scale forest 
monitoring where a number of forest stand structural (e.g. tree density, basal area, stand 
height, volume), compositional (e.g. dominant species, species proportions) or health 
status (e.g. crown condition) variables must be assessed at extremely fine spatial scales. 
In fact, these variables are usually collected on ground sample plots as large as 400-500 
m2. The unmanned aerial vehicles (UAV) imagery could be used to overcome the 
limitation the satellite/airborne remote sensing presents.  

This research explored the capability of a UAV, namely the eBee drone, imagery to map 
forest canopy gaps and derive some forest parameters such as, biodiversity indices, 
habitat trees, basal area, canopy height, deadwood, etc. using handy techniques in a test 
area of 240 ha of natural reserve of Lago di Vico in Central Italy. We used correlation and 
linear regression techniques to explore relationships between gaps patch metrics on one 
side and forest features on the other. 

To achieve those objectives, we firstly mapped forest canopy gaps using the contrast split 
algorithm based on the red band of the RGB orthomosaic. Secondly, we calculated for 
each gap the extent and shape metrics. Thirdly, we aggregated the data on plots’ level 
by only assigning to each plot gaps that completely lie inside the plot or have over 50% 
of their area within the plot. Fourthly, for each plot, we calculated the mean, the standard 
deviation, the sum, the coefficient of variation associated with the patch metrics 
considering minimum area thresholds of 1 m2 and 2 m2, separetly. Sixthly, we performed 
statistical analyses on the collinearity among patch metrics and exploratory analysis for 
the field parameters which were grouped in three different datasets, namely, the 
understorey, the living trees and the deadwood. Seventhly, we performed the correlation 
and regression analyses on gap patch metrics and field parameters. Finally, for field 
parameters that led to an R2 > 0.5 we produced the forest map of the parameter and using 
the cross-validation method, we produced the RMSE associated to each map. 

The results showed that contrast split algorithm is effective in mapping forest canopy 
gaps, particularly the shaded gaps. The 95 patch metrics calculated for each plot (for 
each threshold) were highly collinear. In the study area, the three forest types (Fagus, 
Quercus and Mixed forests) do not have the same understorey, and the same 
characteristics of living trees but the deadwood distribution is roughly the same.  

As a whole, the total deadwood volume presented a poor correlation with patch metrics. 
A similar result is obtained when the deadwood is separated either in decay class or in 
type of deadwood (eg. Standing deadwood, living deadwood, etc). For the understorey, 
the field parameters were strongly correlated with gap patch metrics. For instance, 
Shannon index and mean DBH in the Quercus forest yielded an R2 > 0.5 while in Mixed 
forest, number of plants, mean HTOT and mean DBH exceeded that threshold (Fig1). 
Results were relatively lower in Fagus forest, with only  Pielou index R2 close to 0.5. 
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Fig1. Summary bar chart of adjusted R2 from linear regression with understorey data in all the three forest types. On 
top of each bar, the gap patch metric used for linear regression 

Results for the living trees (Fig2) were similar to the ones in the understorey. We found 
strong correlations between gap patch metrics and living trees parameters. In addition to 
the DBH and HTOT, Pretzsch index, which is an indicator of vertical structure complexity 
and habitat trees, which is a functional diversity indicator, depicted all R2> 0.5. 

 
Fig2. Summary bar chart of adjusted R2 from linear regression with living trees data in all the three forest types. On 
top of each bar the gap patch metric used for the linear regression 

The study showed that in the examined forest types, all characterized by a stand 
exclusion development stage, horizontal structure, vertical structure and functional 
diversity of the forest can be assessed through forest canopy gaps. Of the many gap 
patch metrics, the shape metrics yielded best results compared to the extent ones such 
as the area of the gap. Therefore, the study suggests that a particular attention should be 
given to gap shapes as much as to gap sizes, when creating new gaps by silvicultural 
interventions.
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Chapter 1. INTRODUCTION 

1.1. Research problem 

Reliable estimation of forest canopy attributes is important for many applications ranging 
from hydrology, carbon and nutrient cycling, and global change to forest management 
(Chianucci et al. 2016). In managed forests, namely, one of the most important tasks of 
foresters is the management of competition between trees, through selective thinning or 
opening of canopy gaps, to change the growing space of selected target trees and 
increase their growth. In addition, empirical studies have demonstrated that tree thinning, 
trees death and resultant changes in canopy gap structure impact forest regeneration and 
biodiversity of the understorey plants (Liu et al. 2011; Busing 1994; Popma and Bongers 1988; 
Barden 1981; Brokaw 1982; Boyd et al. 2013). Classically, sustainable forest management 
(SFM) indicators, defined as the basic tools for defining and promoting sustainable forest 
management (ForestEurope 2016), are obtained through repeated ground forest inventories 
(Corona et al. 2011).  

Although this approach provides many benefits such as statistical reliability and high 
accuracy, it is expensive, time consuming and not flexible (Corona 2010). Hence, forest 
information can be hardly updated. Remotely sensed data is one of the best ways to 
monitor forest since the method is nondestructive and achievable even in inaccessible 
areas.  

Airborne and satellite remote sensing has been used for long time in forestry for 
monitoring change in forest cover (Hansen et al. 2013; Nijland et al. 2015), estimating canopy 
height (J. Zhang, Nielsen, et al. 2016; Nijland et al. 2015), measuring tree density (Crowther et 
al. 2015); but it failed to provide the flexibility and the fine spatial resolution usually required  
in forest  management and forest ecosystem monitoring (Getzin, Wiegand, and Schöning 
2012; Anderson and Gaston 2013). This is particularly needed under the climate change 
scenarios predicting extreme events in Europe that will require a regular monitoring of 
forest ecosystems (Lehmann et al. 2015). Even though the stand-level information is critical 
for sustainable forest management  (H. Zhang and Jim 2013), its extraction from medium to 
coarse spatial resolution images is a challenge (Tang and Shao 2015).  

The technological advancement made available remote sensing by unmanned aerial 
vehicles (UAVs) or commonly known as drones which combine both the flexibility of data 
acquisition with a fine spatial resolution and a low cost (J. Zhang, Hu, et al. 2016; Näsi et al. 
2015; Paneque-Gálvez et al. 2014; Zarco-Tejada et al. 2014; Wallace et al. 2016; Lehmann et al. 
2015; Garcia-Ruiz et al. 2013; Colomina and Molina 2014; Dandois and Ellis 2013; Zahawi et al. 
2015). UAVs offer as well the advantage of flying at low altitudes below the clouds (Meng 
et al. 2017; Lehmann et al. 2015; Lisein et al. 2015; Suárez et al. 2005; Bunting and Lucas 2006; 
Puliti et al. 2015). This allows very high spatial resolution images to be generated, with the 
potential to e.g. detecting forest infestation and damages at tree level (Lehmann et al. 2015; 
Hall et al. 2016; Michez et al. 2016; Myers, Ross, and Liu 2015). Notwithstanding all these 
advantages, the UAV’s technology is relatively new in the scientific research compared 
to military applications  (Lisein, Linchant, et al. 2013; Colomina and Molina 2014; Sandbrook 2015; 
J. Zhang, Hu, et al. 2016; Anderson and Gaston 2013; Puliti et al. 2015; Paneque-Gálvez et al. 2014; 
Turner, Lucieer, and Watson 2012). 
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The techniques and packages developed for the airborne and satellite images hardly suit 
UAV imagery and data because of different acquisition parameters (Turner, Lucieer, and 
Wallace 2014; Czapski et al. 2015). Furthermore, mapping some forest features such as 
forest canopy gaps, forest microhabitats, biodiversity presents a great challenge. 
Although some studies tried to overcome some of the challenges (Getzin, Wiegand, and 
Schöning 2012; Getzin, Nuske, and Wiegand 2014; Chianucci et al. 2016), they used methods 
rarely available at low cost or available as handy techniques for forest managers. The 
use of lightweight UAV can help exploring how canopy gaps affect forest regeneration or 
biodiversity of the forest understorey at low cost with not too sophisticated techniques. 

1.2. General objective  

The aim of this research is to assess at what extent forest features, from a small test site 
(240 ha) covered by deciduous forest dominated by beech and turkey oak in central Italy, 
could be extracted from UAV images by using forest canopy gaps as a proxy in order to 
supplement forest inventory data and achieve a sustainable forest management. 

1.3. Specific objectives 

i) Gap mapping 
ii) Exploring correlations between gaps metrics and ground measured forest 

attributes, 
iii) Modeling correlation by linear regression, 
iv) Spatial estimation (or mapping) of selected forest attributes (those with the best fit 

of the regression model).  

1.4. Hypotheses 

• Forest canopy gaps (FCG) could be accurately mapped from UAVs’ data 
• Understorey data (biodiversity indices and structural composition) are correlated 

to FCG 
• Living trees parameters are correlated to FCG 
• Deadwood volume and composition is correlated to FCG 
• Forest structural attributes can be predicted from FCG metrics 

1.5. Thesis structure 

1. This document is structured in five parts. After the introductory chapter, Chapter 2 
deals with the state of art in the field of UAV as a platform and its remote sensing 
application in forestry, 

2. Chapter 3 presents the study area, materials used in order to achieve the 
objectives, and finally methods, 

3. Chapter 4 highlights the main findings and, 
4. Chapter 5 gives a discussion of the main findings and their implication in forest 

management and inventories. 
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Chapter 2. LITERATURE REVIEW 

2.1. Drones as a platform  

The distinction between different types of drones is based on their weight and their size 
as well as their power, which limits their payload carrying capacity, operating altitude, and 
range (Anderson and Gaston 2013; Tang and Shao 2015). For example, Watts et al. (2012) 
classify drones into seven different categories while Anderson & Gaston (2013) classify them 
into four size classes: large, medium, small and mini, and micro and nano. Depending on 
the takeoff and the landing techniques, Tang & Shao (2015) distinguish two type of drones: 
horizontal takeoff and landing and vertical takeoff and landing. The characteristic of fixed-
wing drones is the horizontal takeoff, whereas the rotary-wing drones perform a vertical 
takeoff. The fixed wing drones such as eBee (Anonymous 2017) are preferred when the 
coverage is large and the operator has minimal experience (Tang and Shao 2015). UAVs 
can carry different active or passive sensors such as multispectral cameras − operating 
in the visible, the near infrared (NIR), the short wave infra-red (SWIR), the thermal infrared 
(TIR) − radar and Lidar (Zarco-Tejada et al. 2014; Colomina and Molina 2014; Tang and Shao 
2015). 

The low operational flying altitude of unmanned aerial vehicles, usually in the range of 
50–300 m, permits the acquisition of extremely high spatial-resolution imagery, with a 
resolution up to 1 cm/pixel (J. Zhang, Hu, et al. 2016; Del Pozo et al. 2014; Turner et al. 2014). 
This also generates a lot of aerial images. For instance, the coverage of 2 ha can yield 
around 150–200 images (Turner, Lucieer, and Watson 2012). In addition, UAVs have a very 
short time of flight (Whitehead and Hugenholtz 2014; Paneque-Gálvez et al. 2014). Moreover, 
there is a difference between images acquired by traditional aircrafts and the UAVs. The 
latter has high perspective distortion due to low altitude of the platform, a large rotational 
and angular variations between images, exterior orientation (EO) parameters are either 
unknown or, if measured, they are likely to be inaccurate (Y. Zhang, Xiong, and Hao 2011; 
Turner, Lucieer, and Watson 2012; Puliti et al. 2015).  

Furthermore, images from UAVs denote a  high variability in illumination (Turner, Lucieer, 
and Watson 2012; Drauschke, Bartelsen, and Reidelstürz 2014) and the ground resolution of the 
images differs from the one of tree tops (Drauschke, Bartelsen, and Reidelstürz 2014). 
Consequently, the use of UAVs for monitoring large forest stands can be regarded 
feasible only for small scale forestry applications. UAVs remote sensing presents specific 
challenges such as the elaboration of the mosaic image, the georeferencing and the 
generation of 3D cloud points through a process known as Structure from Motion (SfM). 

Upon the collection of image strips, they are usually combined in a wide image covering 
the study area. This new composite image is known as a mosaic (Hung, Xu, and Sukkarieh 
2014; Turner, Lucieer, and Watson 2012; X. Li and Shao 2014; Flynn and Chapra 2014; Näsi et al. 
2016; Lisein et al. 2015). In practice, the algorithm used tries to align the strips of images by 
selecting a myriad of tie points from one each individual image and comparing them to all 
other images (Lehmann et al. 2015). Turner, Lucieer, and Watson (2012), Harwin and Lucieer (2012) 

assert that the most robust algorithm for creating UAV image mosaics is the Scale 
Invariant Feature Transform (SIFT) algorithm. In fact, SIFT is a region rather than a point 
detector. This leads to the availability of redundant information and therefore improving 
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the quality of the mosaicking. Once the mosaic image is obtained, it needs to be 
georeferenced. 

The lightweight UAVs ( see J. Zhang, Hu, et al. 2016a; Zahawi et al. 2015; Suomalainen et al. 
2014) used in forestry applications do not possess onboard GPS/IMU of good quality 
(Turner, Lucieer, and Watson 2012) that could allow direct georeferencing (Turner, Lucieer, and 
Wallace 2014). Instead, ground control points (GCP) distributed in the image are used 
(Turner, Lucieer, and Watson 2012; J. Zhang, Hu, et al. 2016; Dandois and Ellis 2013; Wallace et al. 
2016; Lehmann et al. 2015; Lisein et al. 2015; Turner et al. 2014) a process known as “indirect 
georeferencing” (Lisein, Linchant, et al. 2013). The two different methods can yield disparate 
results. The quality of the GPS/IMU used onboard determine the accuracy of direct 
georeferencing (Turner, Lucieer, and Wallace 2014) while the quality of the georeferencing 
using GCPs depends mainly on the possibility to discriminate these markers from the 
aerial image. In a study conducted in the Antarctic, Turner et al. (2014), demonstrated that 
the size of GCPs matters to locate GCPs on the aerial images as well as the spatial 
resolution of the images in the accuracy of georectification using GCPs. Furthermore, the 
GCPs georeferencing may underperform if the site is not accessible (Lehmann et al. 2015; 
Wallace et al. 2016) or if are not available open areas (e.g., clear-cuts, canopy gaps, 
agricultural fields) to install GCPs. Consequently, the georeferencing accuracy affects the 
compatibility of UAVs data to the ground-collected data. Nevertheless, Turner, Lucieer, and 
Watson (2012) in a comparative study found that the GCPs georeferencing had an 
accuracy of 10-15 cm, whereas the direct georeferencing performed poorly with an 
accuracy of 65-120 cm. Expanding on the same idea, Lehmann et al. (2015) assert that 
currently, the majority of micro UAV possess a GPS with accuracy ranging from 2 m to 
13 m which is too inaccurate for direct georeferencing. 

The third step usually performed is the generation of three-dimensional (3D) point clouds. 
Due to the fact that UAV images possess both the characteristics of the terrestrial images 
and aerial images (Turner, Lucieer, and Watson 2012), the SfM algorithm developed for 
computer vision can be utilized in UAV imagery to generate 3D photogrammetric point 
clouds. The 3D points are a suitable way of storing complex data (Harwin and Lucieer 2012). 
This data structure has been used in many studies to extract forest biophysical properties 
(e.g. Wallace et al. 2016; Lisein et al. 2013; Näsi et al. 2015; Dandois and Ellis 2013; Zarco-Tejada 
et al. 2014; Turner et al. 2014; Díaz-Varela et al. 2015; Puliti et al. 2015; Kachamba et al. 2016; 
Salamí, Barrado, and Pastor 2014).  

It is important to notice that Turner, Lucieer, and Watson (2012) describe a different workflow 
for processing UAV imagery. In this workflow, the SfM algorithm is used to generate 3D 
cloud points which are then georeferenced. The 3D cloud points are later used to produce 
a digital terrain model (DTM) required for the rectification of images (producing hence 
ortho-images). And finally, the ortho-images are joined together to produce a mosaic 
known as ortho-mosaic. 

With the intent to overcome the aforementioned problems of UAV images, Drauschke, 
Bartelsen, and Reidelstürz (2014) developed a method of using UAV imagery without 
elaborating an ortho-mosaic. Instead, the authors used original images. They argue the 
process suppress the need to balance the intensity value in the scene and to have a 
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constant image scale. The sine qua non condition for the success of the method is to 
possess images with sufficient matching points. 

2.2. UAV’s applications and data analysis 

Since optical UAVs collect data with a very high spatial resolution, the treatment of these 
data differs from the analysis of the traditional airborne or aerial remote sensed data. The 
research for extracting forest attributes from UAVs data is a current topic.  Some of the 
extracted attributes are on the stand level while others are limited to tree level while few 
go up to the landscape level.  

Tree species composition of forest stands can be assessed by optical remote sensing. 
High-resolution imagery can help detecting the dominant forest canopy tree species, 
whereas foresters usually refer to species composition as the relative proportion of the 
number of stems per species regardless of its dominance (Fassnacht et al. 2016). This 
simple difference in the definition can lead to different interpretation of species 
composition. However, many authors have managed to map species composition using 
UAVs data. Hence, Ørka and Dalponte (2013), by combining the airborne laser scanning 
(ALS) data to optical images estimated both the crown species composition and the basal 
area species composition. Furthermore, they found that the estimation was more accurate 
in the coniferous forest compared to deciduous forest due to the low canopy closure in 
the former. Similarly, K. Zhang and Hu (2012), using data of 6 cm of ground sampling 
distance (GSD) classified urban trees. This classification was moreover improved from 
less than 75% to 86.1% when they incorporated textural features. 

The forest canopy gaps constitute another important feature influencing biodiversity and 
natural regeneration capability (Getzin, Wiegand, and Schöning 2012; Getzin, Nuske, and 
Wiegand 2014; Yang et al. 2015). According to Muscolo et al. (2014), gaps increase the habitat 
diversity, fauna and flora diversity, and structural complexity. Although remote sensing is 
the best way to map forest canopy gaps (Getzin, Nuske, and Wiegand 2014), small forest 
gaps cannot be mapped using satellite remote sensing (TANG and Shao 2015). The solution 
nowadays relies on LiDAR and UAV imagery. However, the definition of canopy gap itself 
remains unclear and inconsistent in the literature (Zielewska-Büttner, Adler, Ehmann, et al. 
2016b; Betts, Brown, and Stewart 2005). In addition, there is no clear shape and size of forest 
canopy gap (Seidel, Ammer, and Puettmann 2015) although it is known that gap shape and 
dimension considerably influence gap microclimate (Muscolo et al. 2014; Seidel, Ammer, and 
Puettmann 2015). In their study, Bonnet et al. (2015) defined canopy gaps as ‘openings in the 
canopy with a minimum area of 50 m2, a minimum width of 2 m and a maximum vegetation 
height of 3 m’. Getzin, Wiegand, and Schöning (2012) adopting a different definition, achieved 
to map canopy gaps of the size of 1 m2 from a true colors UAV image of 7 cm spatial 
resolution, in beech dominated deciduous and mixed deciduous-coniferous forests in 
Germany. Furthermore, Getzin, Nuske, and Wiegand (2014) extracted forest gaps and their 
spatial pattern from ten different plots of 1 ha. The gap’s mapping was validated using 
LiDAR data. The authors recommend collecting aerial data in a cloudy condition in order 
to reduce the effect of the shadow that could lead to dark pixels’ misinterpretation as 
gaps. Finally, the gap age is an important aspect since it is correlated to the gap size due 
to the fact that gaps fill with time and the biodiversity is disparate between a newly opened 
gap and an old one (Muscolo et al. 2014). In addition, according to Muscolo et al. (2017), 
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canopy gap age and size are the primary factors affecting the regeneration besides the 
suitable substrate. 

In the quest to map forest attributes at a low cost,  Wallace et al. (2016) performed a 
comparative study on a small plot with variable trees’ density using, on the one hand, 3D 
cloud data generated from RGB UAV imagery, and on the other hand, UAV based Lidar 
(or Laser Scanning, LS). They estimated the canopy cover and the CHM. They concluded 
that the 3D cloud points are capable of capturing structural information in the sparse forest 
but when the density and the forest structure become complex, LS should be favored. 
Likewise, Jensen and Mathews (2016) conducted a similar study. The two authors compared 
the capability of 3D points clouds from SfM and UAV LiDAR data to map the canopy 
height. The density of SfM 3D points was 198 points.m-2 while the LS was captured with 
1.4 m linear spacing. The two datasets yielded similar results with R2 around 90%. 

One of the many forest attributes researchers focus on is the detection individual tree 
species from UAV’s data. Lisein et al. (2015), for instance, studied the best time period and 
spectral images that could lead to a better discrimination of five deciduous tree species 
in a mixed deciduous forest. They strongly argued that the phenology state that optimized 
the classification result is the one that minimizes the spectral variation within tree species 
groups and, at the same time, maximizes the phenologic differences between species. 
The disparity in forest tree phenology is at the maximum during early spring and late 
autumn. The end of leaf flushing was the most efficient single-date time window that 
allows tree species discrimination. They acknowledged, however, that the use of multi-
temporal data improved tree species discrimination although the optimal single time 
window led only to an error of 16%. Comparing the RGB to the CIR data, the authors 
affirmed that the former outperformed the latter. Furthermore, the gain in the combination 
of RGB and CIR data accounts only 4% over the use of only RGB data. Similarly, in order 
to delineate individual tree species, Näsi et al. (2016) used two cameras sensitive in the 
range 400 to 1600 nm wavelength to collect hyperspectral data with GSD ranging from 3 
cm to 20 cm. They observed that not all the spectral range was necessary to discriminate 
the tree species under investigation. Although they managed to classify the five different 
species in the study area, they did not produce any accuracy evaluation on the approach. 

Some researchers worked on the use of UAVs in riparian forests. Michez et al. (2016) 
detected from a 10 cm GSD RGB and CIR images some species composition and their 
health status in Belgium. Similarly, Husson, Ecke, and Reese (2016) used RGB images of 5 
cm GSD to map aquatic vegetation in a ‘Natura 2000’ reserve in Sweden. They compared 
the automatic mapping to the manual one and summarized that the manual mapping of 
the non-submerged vegetation was possible although very time-consuming. Furthermore, 
comparing the threshold classification to the random forest (RF) classification, they found 
that the RF performed relatively poorly. 

Other common tree stand parameters assessed by UAV remote sensing are: the 
coverage or density or Leaf Area Index (LAI) (Chianucci et al. 2016; Bustamante 2015), health 
status of the forest (Lehmann et al. 2015; Garcia-Ruiz et al. 2013; Näsi et al. 2015), the canopy 
height (Dandois and Ellis 2013; Zarco-Tejada et al. 2014; Lisein, Pierrot-Deseilligny, et al. 2013) 
and mapping of forest community (Bunting et al. 2010) . The tree level parameters usually 
studied from UAV’s sensed data are: the tree height using LiDAR data (Wallace et al. 2016; 
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Dandois and Ellis 2013; Zhen, Quackenbush, and Zhang 2016) and individual tree crown width 
(Díaz-Varela et al. 2015; Zhen, Quackenbush, and Zhang 2016; Bunting et al. 2010; Meng et al. 
2017). A more detailed list of studies using UAV data to map forest attributes is given in 
Table 2-1. 

Depending on different forest attributes under investigation, various methods are used. 
Methods themselves vary according to data collected (spatial and spectral resolution of 
images). However, regardless of the data, the first analysis most of the authors working 
on very high-resolution images from UAVs perform is the segmentation in order to 
achieve an object-based image analysis (OBIA) which is based on the classification of 
objects (for example: individual tree crown) rather than pixels (X. Li and Shao 2014; Bunting 
and Lucas 2006; M. Li et al. 2016; Singh et al. 2015; Moskal, Styers, and Halabisky 2011; Puissant, 
Rougier, and Stumpf 2014; Lehmann et al. 2015). 

Individual tree crown detection is important because it allows quantifying vegetation 
density, to monitor the vegetation change and finally the classification of tree species 
(Hung, Bryson, and Sukkarieh 2012). The first step in identifying individual tree crown 
condition is the delineation of the individual crown itself. Delineation of tree crown has 
been under investigation since the 1990s (Erikson 2004). Hence, a number of methods 
have been developed with each one underlying on a specific theory. Hung et al. (2012) 
described the valley growing and the region growing algorithms. These two algorithms 
though very common in computer vision field, perform poorly in detecting tree crowns 
since in forests tree crown edges are not sharp (Hung, Bryson, and Sukkarieh 2012). 

The most common segmentation algorithm in forestry is multi-resolution (MR) 
segmentation and it reveals effective in separating an image into meaningful image 
objects even though it presents a drawback of being very slow (X. Li and Shao 2014). The 
other two common algorithms are the multi-threshold (MT) segmentation and quadtree-
based (QT) segmentation. The latter represents images at multiple resolutions based on 
the pixel values within a given image object: the absolute difference of pixel values within 
the image object is compared with a threshold value (a user defined scale parameter). 
MT segmentation splits an image object domain according to the pixel value(s) assigned 
to the thresholds (X. Li and Shao 2014). To successfully perform the segmentation, many 
authors supplement the spectral data with some vegetation indices (Candiago et al. 2015; 
Rasmussen et al. 2016; Garcia-Ruiz et al. 2013; Quiros and Khot 2016) and textural features 
(Feng, Liu, and Gong 2015; Moskal, Styers, and Halabisky 2011). 
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Table 2-1. Summary of studies mapping forest attributes from UAV data 

Sensor 
camera… Resolution Target variable Data processing Accuracy (where 

appropriate) References 

LiDAR 

40 points/m2 -Canopy gap 
-CHM 

Image segmentation 
Pixel classification 
Raster threshold  

K=0.82 (Bonnet et al. 2015) 

100-1500 points/m2 
-Ind. Height 
-CHM 
-DBH 

Segmentation  
SD= 34 cm 
 
RMSE = 2.1 cm 

(Jaakkola et al. 2010) 

7.2 points/m2 -Species composition individual tree crown (ITC) approach; semi-individual tree crown 
(SITC) approach; and area-based approach (ABA). 

K=0.56 to 0.91 
RMSE= 0.25 to 3.5 cm (Ørka and Dalponte 2013) 

13 points/m2 -HDom 
-Ind. height Linear regression R2= .86   RMSE=1.45m 

R2= .94   RMSE=.83m 
(Lisein, Pierrot-Deseilligny, 
et al. 2013) 

174 points/m2 -Canopy cover 
-Tree height Linear regression RMSE= 0.92m (Wallace et al. 2016) 

50 points/m2 
-Tree height 
-Crown area 
-Crown volume 
-CHM 

α-shape algorithm 
RMSE=0.4 to -0.7 
RMSE = 4.61 m2 
- 
MD< 0.35 m 

(Wallace, Musk, and Lucieer 
2014) 

145 - 220 points/m2 
-CBH 
-Pruning detection 
 

- RMSE=0.60 m 
Rate of detection 96% to 125%  

(Wallace, Watson, and 
Lucieer 2014) 

8-62 points/m2 -Tree height 
-Crown width - Sd= 0.15 m to 0.26 m 

Sd= 0.69 m to 0.61 m (Wallace et al. 2012) 

1.4 points/m -CHM Linear regression R2= 0.89 to 0.90 (Jensen and Mathews 2016) 

RGB camera 

7 cm -Gap size -Manual segmentation 
-Regression R2 =0.74 (Getzin, Wiegand, and 

Schöning 2012) 

7 cm -Gap size 
-Gap pattern 

Manual delineation 
Statistical analysis - (Getzin, Nuske, and 

Wiegand 2014) 

6.8–21.8 cm  
 

-Vegetation units 
-standing dead wood 

Pixel-based analysis 
Segmentation (OBIA) 

K=0.79 
Omission (80%) and 
commission (65%) errors 

 
(Dunford et al. 2009) 

7.5 cm 
 

-LAI 
-Canopy cover 
-Gaps between crowns 

GLA 
LAB2 classification R2=0.59 to 0.70 (Chianucci et al. 2016) 

13 cm -Canopy gap Segmentation 
Textural analysis R= 0.30 to 0.43 (Nyamgeroh 2015) 

 

20 cm -Species  Segmentation 
Random Forest OOB = 16% (Lisein et al. 2015) 

5 cm  -Species 
-Growth form 

Segmentation 
RF 
Threshold  

Accuracy 52% to 99% (Husson, Ecke, and Reese 
2016) 

1.37 – 5.31 cm - understorey invasive plant winSCANOPY Accuracy 0% to 100% (Perroy, Sullivan, and 
Stephenson 2017) 

7.6 cm -HDom 
-Ind. height Linear regression R2 = .82   RMSE=1.65m 

R2 = .91   RMSE=1.04m 
(Lisein, Pierrot-Deseilligny, 
et al. 2013) 

2 cm -Pest infestation 
-Canopy gaps Segmentation  K=0.78 to 0.82 (Lehmann et al. 2015) 
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Sensor 
camera… Resolution Target variable Data processing Accuracy (where 

appropriate) References 

VIS/NIR 
camera 

15 cm -Defoliation Supervised classification - (Castedo-Dorado et al. 
2016) 

10 cm -species  
-health status 

Multiresolution segmentation 
Random forest  

Accuracy of 79.5 % to 84.1 %  
Accuracy of  81.% to 90.6% (Michez et al. 2016) 

10 cm -Stem volume 
-Species identification - - (Salo et al. 2012) 

10 cm -Species identification Supervised classification 
Unsupervised classification Accuracy of 50% to 80% (Gini et al. 2014) 

3D point 
clouds 

55 points/m2 
-Canopy height 
-AGB 
-Canopy openness 
-Canopy roughness 

Ecosynth  
R2>0.85 
R2>0.81 
R2>0.82 
R2>0.53 

(Zahawi et al. 2015) 

30–67 points/m2 
-CHM 
-CHP 
-AGB 

Linear regression 
Ecosynth  R2= 0.63 to 0.84 (Dandois and Ellis 2013) 

1-5652 points/m2 -Canopy cover 
-Tree height Linear regression  

RMSE= 1.3m (Wallace et al. 2016) 

500–700 points/m2 -Ind. Tree detection 
-species identification 

Local maxima 
Classification  

Accuracy = 40% to 95% 
F-Score= 0.85 to 0.93  (Nevalainen et al. 2017) 

198 points/m2 -CHM Linear regression R2= 0.89 to 0.91 (Jensen and Mathews 2016) 

- -Stems identification 3D reconstruction = 0.696. (Fritz, Kattenborn, and Koch 
2013) 

- -Biomass Multiple regression RMSE = 46.7%  (Kachamba et al. 2016) 

-  

- hL 
- HDom  
-Stem number 
-Basal area 
-Stem volume 

Linear regressions 

R2= 0.71   RMSE= 13.3% 
R2= 0.97   RMSE= 3.5% 
R2= 0.60   RMSE= 39.2% 
R2= 0.60   RMSE= 15.4% 
R2=  0.85  RMSE= 14.5% 

(Puliti et al. 2015) 

278  points/m2 -CHM Linear regression RMSE=42 cm (Lin, Lo, and Huang 2016) 
1890 points/m2 
10385 points/m2 

-Diameter 
-Height Combination of aerial and terrestrial images RMSE<1 cm 

RMSE=1 m 
(Mikita, Janata, and Surový 
2016) 

3406-5124 points/m2 -CHM 
-Ind. tree delineation Filter and local maximum algorithm R2= 0.64–0.81 

R2= 0.46–0.64 (D. Li et al. 2016) 

6.2–7.7 cm point 
spacing 

-Top-of-canopy height 
-Aboveground carbon density Correlation  R2= 0.86   RMSE= 2.5 

R2=  0.85  RMSE= 3.9 
(Messinger, Asner, and 
Silman 2016) 

  CHP = canopy height profile, MD=Mean absolute Deviation, CBH= Canopy Base Height; hL= Lorey’s mean height; k=Kappa index, 
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To successfully perform the OBIA classification, researchers working on UAV’s data 
possess a large number of statistical and machine learning classification algorithms such 
as Linear Discriminant Analysis (LDA) (Garcia-Ruiz et al. 2013; M. Li et al. 2016; Roth et al. 
2015), Random Forest (RF) (Puissant, Rougier, and Stumpf 2014; Belgiu and Drăgu 2016; Feng, 
Liu, and Gong 2015; Stumpf and Kerle 2011; M. Li et al. 2016; Lisein et al. 2015; Nevalainen et al. 
2017; Michez et al. 2016; Drauschke, Bartelsen, and Reidelstürz 2014),   K-Nearest Neighbor 
(KNN) (M. Li et al. 2016; J. Zhang, Hu, et al. 2016; Lehmann et al. 2015; Nevalainen et al. 2017), 
and Support Vector Machines (SVM) (Garcia-Ruiz et al. 2013; M. Li et al. 2016; Pelletier et al. 
2016; Puissant, Rougier, and Stumpf 2014). Although classification algorithms are diverse, 
they do not have the same performance. M. Li et al. (2016) suggest that the SVM and RF 
are the best algorithms for classification and whenever possible, RF should be favored 
over the SVM. The RF classification is computationally efficient and not sensitive to the 
over fitting (Belgiu and Drăgu 2016; Puissant, Rougier, and Stumpf 2014). Nevertheless, Ma et al. 
(2015) acknowledge that many segmentation factors, including scales, features, samples 
and mixed objects can influence the classification algorithm performance.  
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Chapter 3. MATERIALS AND METHODS 

3.1. Study area 

The test site is located in Monte Venere, which is part of the natural reserve “Riserva 
Naturale del Lago di Vico”. The natural reserve has been established by the Lazio Region 
Law No. 47 of 28.10.1982. Its territory comprises some of 4110 ha, in the municipalities 
of Caprarola and Ronciglione (Province of Viterbo, Lazio Region).  

The landscape of the Natural Reserve is mostly flat around the lake of Vico but includes 
also several reliefs such as M. Fogliano (965 m), Poggio Nibbio (896 m), Poggio 
Gallesano (839 m) and Monte Venere (835 m). Mean annual rainfall ranges between 800 
and 850 mm per year.  

Forest areas cover about 750 in the Natural Reserve. Forest cover is characterized by 
deciduous high forests dominated by beech, turkey oak and mixtures of the two species. 

The Natural Reserve includes also two Sites of Community Importance (SCI) called 
“Monte Fogliano and Monte Venere” and “Lago di Vico” and a Special Protection Area 
(SPA) “Lago di Vico - Monte Fogliano and Monte Venere”.  

The test site covers about 240 hectares within the larger area of the SCI "Monte Fogliano 
and Mount Venere"(618 hectares). The beech forest areas protected by the SCI are 
reported as priority habitats of Community interest (the Apennines beech forests with 
Taxus and/or Ilex).  

 
Figure 3-1. Location of the Study area (background: Openstreet Landscape map) 
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The presence of very fertile volcanic soils and the particular microclimate, related to the 
presence of the lake, create favorable conditions for the growth of beech, even at a low 
elevation. In fact, the conformation of the basin, the frequent formation of mists, the high 
relative air humidity and the protection from extreme winds ensure a suitable habitat for 
this species. As result, the beech forest of Monte Venere has a relevant ecological 
importance as it grows at much lower altitudes (around 500 m above sea level) than those 
usually occupied by beech in the Central Apennines (optimum between 1,000 and 1,700 
m asl). 

Beech forest of Monte Venere belongs to the Aquifolio-Fagetum association, that seems 
to reach the extreme northern boundary of its ecological range in the Province of Viterbo 
(Scoppola and Caporali 1998). Beech is usually accompanied by other deciduous trees like 
Quercus cerris L. (turkey oak) - in the upper layer and only at lower altitudes, Carpinus 
betulus L. (hornbeam), Castanea sativa Mill. (Chestnut), Acer opalus L. (maple), Corylus 
avellana L. (hazel), Ilex aquifolium L. (holly) - in the dominated in layer -.  

Turkey oak becomes the dominant species in the reliefs facing south. Turkey oak forests 
also contain accompanying species such as ash (Fraxinus ornus L.) and hornbeam 
(Ostrya carpinifolia L.). Turkey oak forests present a well-developed shrub layer including 
Rosa canina L., Cornus sanguinea L., Crataegus monogyna Jacq., Crataegus oxychanta 
L., Ruscus aculeatus L.  

All the forests in Monte Venere are in an early development stage, equivalent to the stand 
exclusion stage sensu Oliver and Larson (1996). 

3.2. Field data collection 

A field survey was performed in the framework of the FRESh LIFE project on fifty squared 
plots of 23 meters’ side (area of the plot 529 m2). In each plot, all plants (trees and shrubs) 
with a dbh > 2.5 cm were inventoried. The spatial position of the inventory plot (x, y 
coordinates of the center of the plot) was recorded with GNSS receivers with a sub-meter 
accuracy. Field data on tree and shrubs occurring in the field plots were used in the 
present study to assess species composition and diversity of the understorey layer and 
its relationships with gap features. 

Data were collected on three different levels. Firstly, the understorey data. We followed 
along with Assmann (1970) defining the understorey as the layer representing 0-50% of the 
maximal height of the stand. For the understorey, and in each plot, we recorded the 
number of plants (trees) (N_PLANTS), the number of species (N_SPECIES), the 
Shannon index (H’) (Shannon 1948), the Pielou index (I_PIELOU) (Pielou 1975), the mean 
DBH (MEAN_DBH), the average total height (MEAN_HTOT), the averages of total 
understorey volume (V_TOT) and basal area (G_TOT).  

Secondly, we collected on living trees data such as the number of habitat trees (HAB), 
the percentage of habitat trees (%HAB) out of total plants in the plot, the mean DBH, the 
mean total height of the living trees in the plot, the index of Pretzsch (I_PRETSCH), the 
index of Shannon (I_SHANNON), the index of Margalef (I_MARGALEF) (Clifford and 
Stephenson 1975), the mean DBH, the mean total height. Bütler et al. (2013) define habitat 
trees are as standing live or dead trees providing ecological niches (microhabitats) such 
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as cavities, bark pockets, large dead branches, epiphytes, cracks, sap runs, or trunk rot. 
They are usually very large and old trees (Figure 3-2). 

 
Figure 3-2. Different microhabitat types. A. Nonwoodpecker cavity, B. Canopy deadwood, C. Fruit-bodies of 
saproxylic fungi, D. Cavities with mould, E. Root-buttress cavity, F. Cracks, G. Fork split, H. Burr (Bütler et al. 2013) 

Thirdly, in each plot, we recorded total volumes of lying deadwood (TOT_LYING), the 
standing dead wood (TOT_STAND) and stumps (TOT_STUMP). We distinguished as 
well, the total of dead wood in different decay classes (VOL1, VOL2, VOL3, VOL4, and 
VOL5), and the total volume of deadwood (VOL_TOT). 
Table 3-1. Summary of diversity indices 

Indices Formulae Range of 
variation 

Description 

Shannon index (𝐻𝐻′) −∑𝑝𝑝𝑖𝑖 ln⁡(𝑝𝑝𝑖𝑖) [0,ln(S)] It expresses the frequency of the i-th 
species in a community, takes values 
generally between 0 and 3.5; higher 
values correspond to higher species 
diversity. Its maximum value 
(MAX_SHANNON) is given by the 
natural logarithm of the number of 
species found in the test area and 
occurs when all species are equally 
present. 

Pielou index (𝐸𝐸) 𝐻𝐻′/ln⁡(𝑆𝑆) [0,1] The index measures the relative 
abundance of species groups. The 



14 
 

index can take values between 1 (all 
species are equally abundant) and 0 
(there is only one species). 

Pretzsch index (𝐴𝐴𝑝𝑝) −∑∑𝑝𝑝𝑗𝑗𝑖𝑖𝑍𝑍
𝑗𝑗=1

𝑆𝑆
𝑖𝑖=1 ln⁡(𝑝𝑝𝑖𝑖𝑗𝑗) [0,ln(SxZ)] The index summarizes and quantifies 

species diversity and the vertical 
distribution of species in a forest. The 
index is lowest in one-story pure forests, 
whereas it rises for pure forests with two 
or more stories. Peak values are 
reached in mixed woodlands with 
heterogeneous structures. 

Margalef index (𝐷𝐷) (𝑆𝑆 − 1)ln⁡(𝑁𝑁) [0,∞) It quantifies the presence of a number of 
species in a community. It also depends 
on the number of plants found in the 
sampling area. The index grows with 
increasing species diversity. 

S=number of species; N= total number of plants; pij= the frequency of specie i in the layer j; pi= frequency 
of the specie i. z= number of layers 

3.3. UAV imagery collection 

Aerial images covering the test site area were collected in May 2016 by the fixed-wing 
eBee drone (SenseFly, Cheseaux-Losanne, Switzerland, Figure 3-3), in the framework 
of the LIFE Project FRESh LIFE – Demonstrating Remote Sensing integration in 
sustainable forest management (https://freshlifeproject.net/). The eBee was equipped 
with a commercial 18.2 MP RGB camera. The eBee, a hand-launched and autonomous 
flying drone with an electric motor-driven pusher propeller, has a 96 cm wingspan and a 
weight of about 700 g including camera, inertial measuring unit, GPS and battery 
payloads. The maximum area covered in a single flight is about 12 km2 in a maximum 
flight time of 45 min. By using the onboard navigation units, the horizontal/vertical 
accuracy ranges from 1 m to 5 m. The eBee flight plan was managed through SenseFly’s 
eMotion software and the flight monitored through a laptop; the software requires an initial 
parameter like the area of interest, desired GSD, side and longitudinal image overlap. 
The software then automatically calculates the number of stripes to cover the area of 
interests and the flight height. Take-off and landing are also planned and managed by the 
software and monitored through the laptop. The controller has the ability to remotely 
control the UAV during the flight by the means of wireless modem connected to the laptop 
up to a distance of 3 km from the vehicle. 
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Figure 3-3. A view of the eBee drone (source: https://www.sensefly.com/drones/accessories.html) 

 
Figure 3-4. eBee RGB camera (left) and its spectral band responses (right) (source: 
www.sensefly.com/drones/accessories.html). 

 

The eBee possesses two different sensors. The RGB sensor with sensibility in blue (450 
nm), green (520 nm) and red (660 nm) (Figure 3-4). The second sensor, a 12MP camera, 
provides green (550 nm), red (625 nm) and the NIR (850 nm)  band data (Figure 3-5). 
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Figure 3-5. eBee NIR camera (left) and its spectral band responses (right) (source: 
www.sensefly.com/drones/accessories.html) 

Prior the takeoff, GCPs were placed and their coordinates were accurately measured. 

Image strips were combined into a very high resolution RGB (10 cm pixel) and CIR (20 
cm) orthomosaics. In order to map canopy gaps, the RGB orthomosaic was preferred, 
being characterized by a higher spatial resolution and higher tonal contrast compared to 
the CIR orthomosaic (Figure 3-6). 

Figure 3-6. RGB true colors orthomosaic (left) and NIR false colors orthomosaic (right) 

3.4. Image processing and variable selection 

We tested different settings of the Contrast Split segmentation algorithm to map forest 
canopy gaps from the red band of the RGB orthomosaic. The red band was the only 
one significantly contrasting canopy gaps and crowns. The Contrast split algorithm is 
considered effective in separating objects of different contrasts, particularly dark 
objects from bright ones (Dezso et al. 2012). The idea of testing different settings is to 
extract as accurately as possible forest canopy gaps as well as intra-trees canopy 
gaps. This process was accomplished using eCognition Developer 
(http://www.ecognition.com) software. We validated the gap delineation by visual 
interpretation of the original orthomosaic. The visual validation techniques have been 
often used in forest canopy gaps mapping (Zielewska-Büttner, Adler, Ehmann, et al. 
2016a). We later tested different thresholds to discriminate small gaps which might not 
affect ecological phenomena under investigation and therefore constitute a noise 
masking relevant data. We only considered gaps falling within the plot boundary and 
gaps within the plot boundary for at least 50% of their area. For each gap, we calculated 
the shape and size indices, and other gap patch metrics commonly used in landscape-
scale analyses (Getzin, Wiegand, and Schöning 2012). 
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These gap patch metrics are the area (A), the length ( vl ), the border length (or the 
perimeter, vb ), the ratio length/width , the width, border index (B.Index), asymmetry 
(Asym), roundness (Round), compactness (Comp), shape index, density, rectangular fit 
(Rect.fit), radius of the largest enclosed ellipse (RLE), radius of the smallest enclosed 
ellipse (RSE), elliptic fit and other composite indices such as the shape complexity index 
(GSCI). The gap shape complexity index is an important measure of forest gaps 
(Koukoulas and Blackburn 2004). It is the ratio of a gap’s perimeter to the perimeter of a 
circular gap of the same area. A value of 1 describes a perfect circle while increasing 
values indicate increasing shape complexity. For example, values of 1.20 and 2.70 have 
20% and 170% complexity, respectively. The last three gap metrics are the patch fractal 
dimension (PFD) (Moser et al. 2002), the fractal dimension (FD) (Eysenrode et al. 1998) and 
the fractal dimension index (FDI) (Saura and Carballal 2004). Thus, all 19 patch metrics  (see 
Table 3-2 and for more explanation refer to eCognition  Reference Book) emphasize 
different nuances of two- dimensional gap properties that may be potentially important for 
linking image-detected higher-level structures to dependent lower- level processes of the 
biota. 

For each patch metric, we calculated the median (mdn), the mean (avg), the standard-
deviation (sd), the sum (sum), and the coefficient of variation (cv). This leads to 95 
variables for each plot. We tested gap metrics with two different area thresholds namely 
of size greater than 1 m2 and greater than 2 m2. These two thresholds are set because 
some ecological phenomena, such as understorey structure dependencies, are only 
quantifiable if small gaps are taken into account, yet very small gaps may not affect at all 
the lower dependency phenomenon, constituting, therefore, a noise (Busing 1994). 
Table 3-2. Summary description of patch metrics  

Patch metric Formula Value range Description 
Area (A)    
Border length  
( vb ) 

 [0, ∞) Is basically the perimeter of the gap 

Length  ( vl ) v vP γ   [0, ∞) 
vP  is the total number of pixels contained in the 

patch v 

vγ  is the length-width ratio of an image object v 
Length/Width  
( vγ ) 

- [0, ∞) The length-to-width ratio of an image object 

Width ( vw ) v

v

P
γ

 [0, ∞) The width of an image object is calculated using 
the length-to-width ratio 

Asymmetry - [0,1] The Asymmetry feature describes the relative 
length of an image object, compared to a regular 
polygon. An ellipse is approximated around a 
given image object, which can be expressed by 
the ratio of the lengths of its minor and the major 
axes. The feature value increases with this 
asymmetry. 

Border Index 

2 ( )
v

v v

b
l w+

 
[1, ∞) 
1=ideal 

The Border Index feature describes how jagged 
an image object is; the more jagged, the higher its 
border index. This feature is similar to the Shape 
Index feature, but the Border Index feature uses a 
rectangular approximation instead of a square. 
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Patch metric Formula Value range Description 
The smallest rectangle enclosing the image object 
is created and the border index is calculated as 
the ratio between the border lengths of the image 
object and the smallest enclosing rectangle 

Compactness - [0, ∞) 
1=ideal 

The Compactness feature describes how compact 
an image object is. It is similar to Border Index, but 
is based on area. However, the more compact an 
image object is, the smaller its border appears. 
The compactness of an image object is the 
product of the length and the width, divided by the 
number of pixels. 

Density - [0, depending on 
shape of image 
object] 

The Density feature describes the distribution in 
space of the pixels of an image object. 
In eCognition Developer 9.0 the most “dense” 
shape is a square; the more an object is shaped 
like a filament, the lower its density. The density is 
calculated by the number of pixels forming the 
image object divided by its approximated radius, 
based on the covariance matrix 

Elliptic Fit - [0,1] ; 1 = complete 
fitting, 0 = <50% fit. 

The Elliptic Fit feature describes how well an 
image object fits into an ellipse of similar size and 
proportions. While 0 indicates no fit, 1 indicates a 
perfect fit. The calculation is based on an ellipse 
with the same area as the selected image object. 
The proportions of the ellipse are equal to the 
length to the width of the image object. The area 
of the image object outside the ellipse is compared 
with the area inside the ellipse that is not filled by 
the image object 

Radius of 
Largest Enclosed 
Ellipse ( max

vε ) 

- [0, ∞) The Radius of Largest Enclosed Ellipse feature 
describes how similar an image object is to an 
ellipse. The calculation uses an ellipse with the 
same area as the object and based on the 
covariance matrix. This ellipse is scaled down until 
it is totally enclosed by the image object. The ratio 
of the radius of this largest enclosed ellipse to the 
radius of the original ellipse is returned as a 
feature value. 

Radius of 
Smallest 
Enclosing Ellipse 
( min

vε ) 

- [0, ∞) The Radius of Smallest Enclosing Ellipse feature 
describes how much the shape of an image object 
is similar to an ellipse. The calculation is based on 
an ellipse with the same area as the image object 
and based on the covariance matrix. This ellipse 
is enlarged until it encloses the image object in 
total. The ratio of the radius of this smallest 
enclosing ellipse to the radius of the original 
ellipse is returned as a feature value. 

Rectangular Fit - [0,1] ; where 1 is a 
perfect rectangle. 

The Rectangular Fit feature describes how well an 
image object fits into a rectangle of similar size 
and proportions. While 0 indicates no fit, 1 
indicates for a complete fitting image object. The 
calculation is based on a rectangle with the same 
area as the image object. The proportions of the 
rectangle are equal to the proportions of the length 
to width of the image object. The area of the image 
object outside the rectangle is compared with the 
area inside the rectangle. 

Roundness max min
v vε ε−  [0, ∞); 0 = ideal The Roundness feature describes how similar an 

image object is to an ellipse. It is calculated by the 
difference of the enclosing ellipse and the 
enclosed ellipse. 
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Patch metric Formula Value range Description 
Shape Index / 4vb A  [1,∞) ; 1 = ideal The Shape index describes the smoothness of an 

image object border. The smoother the border of 
an image object is, the lower its shape index 

Gap shape 
complexity index 
(GSCI) 

/ 4vb Aπ  [1,∞) ; 1 = perfect 
circle  

It is the ratio of a gap’s perimeter to the perimeter 
of a circular gap of the same area 

Patch fractal 
dimension (PFD) 

v2 ln(b ) / ln(A)  - - 

Fractal 
dimension (FD)  

v2 ln(b / 4) / ln(A)  - - 

fractal dimension 
index (FDI) v2 ln(b / 4 ) / ln(A)π  - - 

 

3.5. Forest types maps 

In the framework of the FRESh LIFE project the RGB orthomosaic was classified by visual 
image interpretation, a qualitative image classification technique widely applied by forest 
practioners for forest cover typing. The high spatial resolution of RGB orthomosaic is fine 
enough that by a combination of tone, size, shape and texture criteria individual trees can 
be identified to genus or species by their branching habit and spectral response. 
Differences in tone in the green band were the fundamental criterion for mapping the 
three main forest cover types occurring the study area: beech, turkey oak or mixed beech 
and turkey oak.  

On the field, we determined three types of forest (turkey oak, beech, and mixed) identified 
on the basis of the percentage contribution of the basal area of the dominant species 
(beech and oak) within trees (Figure 3-7). The forest type has been defined as: 

• Pure (beech or oak): where beech or oak contributes at least 85% to the total basal 
area determined for the stumps; or where none of the two species reach the 85% 
threshold and one of them contributes less than 15%. In the latter case, the forest type 
assigned to the plot is that of the main species that offers the greatest contribution; 

• Mixed: when it is an intermediate situation 
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Figure 3-7. Map of forest types. eBee RGB imagery overlaid by type of forest according to European Forest Type 
Frame in the Caprarola forest 

3.6. Statistical analyses 

We applied several statistical analyses to test the dependence among image based 
variables called patch metrics and field data parameters. Firstly, we performed 
exploratory analysis on the data. Therefore, we performed the ANOVA (Analysis of 
Variance) when the distribution is normal or the KRUSKAL-WALLIS analysis otherwise 
with the categorical variable being the forest type characterizing each single plot (cf. § 
3.5). This analysis allowed to determine whether the field parameter should be split into 
forest type for further analysis or could be taken as a whole. 

We used all gap variables for Pearson’s product-moment correlation analysis and 
Spearman’s rank correlation with the field data. Usually, the two correlations give 
approximately the same results (see Main-Knorn et al. 2011). To avoid that the observed 
correlation, although significant according to the p-value lower than 5%, could have 
happened by chance, its significance was further thoroughly tested using the 9999 
permutation method proposed by Legendre and Legendre (1983). Indeed, the authors assert: 
‘permutation provides an efficient approach to testing when the data do not conform to 
the distributional assumptions of the statistical method one wants to use (e.g. normality). 
Permutation testing is applicable to very small samples, like nonparametric tests.’ 
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Therefore, permutation method perfectly fits our study. Furthermore, this method has 
been successfully used by some researchers investigating the relationship between forest 
canopy gap metrics and biodiversity (Getzin, Wiegand, and Schöning 2012). 

For gap variables correlated with field data, we tested the correlation among significant 
potential predictors. This second step allowed to decrease the redundant information 
brought by correlated potential predictors and eliminate the collinearity or singularity. To 
determine the most significant variables to be used as possible predictors we used a 
forward stepwise analysis. The forward stepwise is known to select only the most 
significant predictors as opposed to the backward that eliminates the least significant 
ones. Therefore, the forward stepwise approach leads to a model with the minimal 
necessary number of variables only. 

When the forward stepwise yielded only one predictor variable as sufficient to model the 
field parameter, we compared the correlation coefficients of Spearman and Pearson. If 
these two coefficients are significant and close to each other, then the patch metric is 
selected as a predictor. Otherwise, the variable denoting both Spearman and Pearson 
coefficients significantly high is selected as the most determinant. This approach has the 
advantage of; on the one hand excluding variables depicting high Pearson’s correlation 
due to extreme values, and on the other one, not solely relying on the Spearman’s 
correlation which is a measure of monotony (Hauke and Kossowski 2011) and not of linearity. 
We performed the correlation analysis using the Hmisc package (https://cran.r-
project.org/web/packages/Hmisc/index.html). 

Finally, we performed the linear regression using the selected significant variables.  
Following the lines of Møller and Jennions (2002) and Getzin, Wiegand, and Schöning (2012), 
who considered a coefficient of determination R2 > 0.25 as meaningful since the predictor 
value leads to a great change if it explains over 25% of variance, we set as threshold R2 

> 0.5. We then validated the regression by checking the regression quality assumptions 
such as the normality of residuals, the Homoscedasticity of residuals, the mean of the 
residuals is zero. The regression quality check was achieved through the gvlma (Global 
Validation of Linear Model Assumptions) package (https://cran.r-
project.org/web/packages/gvlma/index.html). Other statistical analyses were performed 
using additional packages such as ggplot2, deplyr, readr, combinat, etc. from R 
Foundation 3.2.3 (https://www.r-project.org/foundation/). For forest parameters which can 
be predicted with R2 greater than 50%, we generalize the model to the whole forest type 
and performed the validation with cross-validation (Leave-One-Out Cross-Validation) 
producing hence the root mean square error (RMSE). 
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Figure 3-8. Flow chart of the methodology    
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Chapter 4. RESULTS 

4.1. Forest canopy gaps mapping 

The contrast split algorithm based on the red band gave the best results. It managed to 
accurately differentiate dark objects (shaded canopy gaps) to bright ones which, in most 
cases correspond to the area covered by forest canopy. Gaps detected ranges from 1 
pixel (or 100 cm2) to 122 m2.  Small gaps corresponded indeed to intra-crown gaps while 
big ones are truly inter-crown gaps. The mapping faithfully delineated shaded canopy 
gaps but poorly performed in illuminated gaps when the bare soil was apparent (Figure 
4-1). 

 
Figure 4-1. Snapshot of gap delineation using the Contrast Split algorithm 

The collinearity analysis of gap patch metrics showed that patch metrics are strongly 
correlated to each other. A sample result of collinearity analysis of the predictor variables 
is reported in Figure 4-2. There is a high correlation among patch metrics variable. The 
lowest correlation is obtained with the coefficient of variation, whereas the highest is 
associated to the sum. 
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Figure 4-2. Example of the correlation matrix of the most correlated predictor variables and the least correlated ones. 
a) Correlation of Pearson from patch metrics variables associated with the sum and b) correlation of Pearson from 
the patch metrics associated with coefficient of variation.  

4.2. Understorey analyses 

The preliminary analysis reveals that many field parameters related to the understorey 
data denote a significant difference depending on the forest type. However, Pielou index, 
MEAN_HTOT and MEAN_DBH do not present any significant difference among the three 
forest type (Table 4-1 and Figure 4-3). The understorey data is fairly well distributed 
except in Fagus forest where there are many outliers (Figure 4-3). 
Table 4-1. Summary of exploratory statistics on understorey data 

Normal distributed variables 
Variables ANOVA TUKEY 

I_PIELOU no significant difference  
MEAN_HTOT no significant difference  

Variables non normal 
Variables KRUSKAL-WALLIS MANN-WHITNEY 

N_PLANTS *** (1 vs 2)***; (2 vs 3)** 
N_SPECIES *** (1 vs 2)***; (1 vs 3)** 
I_SHANNON *** (1 vs 2)***; (1 vs 3)** 
MEAN_DBH no significant difference  
G_TOT *** (1 vs 2)*** 
V_TOT ** (1 vs 2)** 

*p<0,05; ** p<0,01; *** p<0,001; 1 = beech forest; 2 = oak forest; 3 = mixed forest 
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Figure 4-3. Boxplot of the understorey data per forest type 

On average Beech forest displays relatively few number of species and number of trees 
per plots compared to the Oak and the Mixed forests. The oak forest has the highest 
understorey diversity with around five species per plot. The beech forest has the 
understorey with the highest basal area and volume per individual plant. This could 
explain why the number of plant in that forest is relatively lower (Table 4-2). 
Table 4-2. Summary of understorey data per forest type 

Forest type Mean number of 
plants/plot 

Mean number of 
species/plot 

Mean basal area 
(m2)/plant 

Mean total volume 
(m3)/plant 

Beech 6,0 1,4 0.011 0.065 

Oak 29,9 5,4 0.008 0.042 

Mixed 11,7 3,3 0.009 0.046 

 

4.2.1. Correlation analysis of understorey data in Quercus forest 
In Quercus forest, there is a significant correlation with both 2m2 and 1m2 thresholds. 
Average total height and total basal area were the least correlated with Pearson 
correlations values of -0.58 and -0.57, respectively. The strongest correlation is between 
Shannon index and average DBH with values of -0.75 and 0.79, respectively (Table 4-3) 
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Table 4-3. Coefficient of correlations of Pearson and Spearman for some selected explicative and understorey 
dependent variables in Quercus forest 

 N_PLANT
S 

N_SPECIES I_SHANNON I_PIELOU MEAN_DB
H 

MEAN_HTOT V_TOT G_TOT 

Mdn_GSCI Sd_rect.fit Sd_rect.fit Sd_Density Avg_rect fit Med_B. Index Med_Asy Avg_Asy 
Threshold 1m2 2m2 2m2 1m2 1m2 2m2 1m2 1m2 
Pearson 0.73 -0.66 -0.75 -0.64 0.79 -0.58 -0.64 -0.57 
Spearman 0.70 -0.73 -0.88 -0.68 0.75 -0.67 -0.57 -0.55 

 

The variability in the number of plants is explained by the median of GSCI with an adjusted 
R2 of 0.49, while variabilities in number of species, Shannon index, average DBH are 
explained by sd_rect.fit (R2=0.39), sd_rect.fit (R2=0.52), and sd_rect.fit (R2=0.60), 
respectively (Table 4-4 and Table 4-5).  
Table 4-4. Results of linear regression of the understorey in Quercus forest 

N_PLANTS N_SPECIES I_SHANNON I_PIELOU 
N=13 B SE 

(B) 
R2 p-value  B SE 

(B) 
R2 p-value  B SE 

(B) 
R2 p-value  B SE 

(B) 
R2 p-value 

Linear regr.     Linear regr.     Linear regr     Linear regr     
Intercept -28.85 16.8   Intercept 7.21 0.71  0.000 Intercept 1.70 0.13  0.000 Intercept 1.02 0.10  0.000 
Med_GSCI 18.61 5.24 0.49 0.005 Sd_rect.fit -20.66 7.02 0.39 0.013 Sd_rect.fit -4.83 1.28 0.52 0.003 Sd_Density -1.10 0.41 0.34 0.021 

 
Table 4-5. Results of linear regression of the understorey in Quercus forest (continuation….) 

MEAN_DBH MEAN_HTOT V_TOT G_TOT 
N=13 B SE 

(B) 
R2 p-

value 
 B SE 

(B) 
R2 p-

value 
 B SE 

(B) 
R2 p-

value 
 B SE 

(B) 
R2 p-

value 
Linear regr.     Linear regr     Linear regr     Linear regr     
Intercept -23.27 7.38  0.009 Intercept 9.54 1.04   Intercept 5.34 1.48  0.004 Intercept 1.05 0.35  0.012 
avg_rect.fit 48.39 11.43 0.60 0.001 Mdn_B.Index -56.61 24.15 0.27 0.039 Mdn_Asym. -6.60 2.36 0.36 0.018 Avg_Asym -1.36 0.59 0.26 0.041 

 

4.2.2. Correlation analysis of understorey data in Mixed forest 
In Mixed forest, many understorey indicators are strongly correlated with patch metrics. 
The 2m2 threshold led to more correlations. The highest positive and negative correlations 
are obtained with a threshold of 2m2.  The highest positive correlation is between total 
average height and average Asymmetry with a value of 0.94; whereas the highest 
negative correlation is between the Number of plants and the average roundness (Table 
4-6). 
Table 4-6. Coefficient of correlation of Pearson and Spearman for some selected explicative and dependent variables 
in mixed forest 

 N_PLANTS N_SPECIES I_SHANNON I_PIELOU MEAN_DBH MEAN_HTOT G_TOT V_TOT 
Avg_Round. Mdn_RSE Mdn_RSE avg_RLE Sum_width Avg_Asym. Sd_Asym. Avg_Comp. 

 2m2 1m2 1m2 2 m2 2m2 2m2 2m2 2m2 
Pearson -0.81 0.73 0.69 0.71 -0.78 0.94 0.72 -0.67 
Spearman -0.83 0.70 0.70 0.75 -0.70 0.92 0.72 -0.77 

RSE= Radius of the Smallest Enclosed Ellipse 
RLE=Radius of the Largest Enclosed Ellipse 
 

The goodness of fit of the linear regression to understorey data shows high values. The 
adjusted-R2 ranges from 37% to 87% corresponding respectively to total volume (V-TOT) 
of the understorey and average total height (MEAN_HTOT) (Table 4-7 and Table 4-8).  
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Table 4-7. Results of Linear regression of the understorey in Mixed forest 

N_PIANTE N_SPECIES I_SHANNON I_PIELOU 
N=9 B SE 

(B) 
R2 p-

value 
 B SE 

(B) 
R2 p-

value 
 B SE 

(B) 
R2 p-

value 
 B SE 

(B) 
R2 p-

value 
Linear regr.     Linear regr     Linear regr     Linear regr     
Intercept 47.02 9.62  0.002 Intercept 0.86 0.93   Intercept 0.11 0.35   Intercept 0.1 0.3   
avg_Round. -23.79 6.40 0.62 0.007 Med_R.SE 8.29 2.92 0.47 0.025 Med_R.SE 2.73 1.08 0.40 0.040 avg_R_LE 0.42 0.17 0.43 0.045 
 
Table 4-8. Results of Linear regression of the understorey in Mixed forest (continuation….) 

MEAN_DBH MEAN_HTOT G_TOT V_TOT 
N=9 B SE 

(B) 
R2 p-

value 
 B SE 

(B) 
R2 p-

value 
 B SE 

(B) 
R2 p-

value 
 B SE 

(B) 
R2 p-

value 
Linear regr.     Linear regr     Linear regr     Linear regr.     
Intercept 9.70 0.82  0.000 Intercept 0.90 0.82   Intercept -0.02 0.05   Intercept 3.48 1.23  0.026 
Sum_width -0.00 0.00 0.51 0.018 Avg_Asym 10.39 1.40 0.87 0.000 Sd_Asym. 0.59 0.21 0.45 0.027 Avg_Comp -1.16 0.48 0.37 0.048 

 

4.2.3. Correlation analysis of understorey data in Fagus forest 
The correlation analysis using an area threshold of 1m2 leads to a significance of 
correlation for the number of species, the Shannon index, the Pielou Index, while the most 
significant correlation using the 2m2 threshold is with the average total height and the 
coefficient of variation of the Length of the patch metric. The highest correlation is 
between Pielou index and median of PFD with a correlation of 0.74 and 0.87  for Pearson 
and Spearman correlations, respectively (Table 4-9). 
Table 4-9. Coefficient of correlation of Pearson and Spearman for some selected explicative and dependent variables 
in Fagus forest 

 N_SPECIES I_SHANNON I_PIELOU MEAN_HTOT 
Cv_Round Sd_Round Med_PFD cv_Lenght 

Threshold 1 m2 1 m2 1 m2 2 m2 
Pearson -0.43 0.50 0.74 0.52 
Spearman -0.45 0.56 0.87 0.57 

 

The linear regression fitted to data highlights that up to 48% of variability of the Pielou 
index can be explained by the median of PFD. Other indicators yielded poor results with 
only 15% of variability in the number of species explained by the coefficient of variation 
of the roundness, whereas the Shannon index and the average total height 
(MEAN_HTOT) variations are accounted from patch metrics by 21% and 23%, 
respectively (Table 4-10). 
Table 4-10. Results of Linear regression of the understorey in Fagus forest  

N_SPEIES I_SHANNON I_PIELOU MEAN_HTOT 
N=28 B SE 

(B) 
R2 p-value  B SE 

(B) 
R2 p-value  B SE 

(B) 
R2 p-value  B SE 

(B) 
R2 p-value 

Linear regr.     Linear regr     Linear regr     Linear regr     
Intercept 3.13 0.77  0.000 Intercept 1.01 0.29  0.002 Intercept 0.26 0.18   Intercept 5.46 1.40  0.000 
Cv_Round. -6.02 2.64 0.15 0.033 Sd_Round. -1.85 0.72 0.21 0.018 Med_PFD. 0.06 0.02 0.48 0.022 Cv_Length 11.14 4.20 0.23 0.016 

 

The spatiatialisation of the understorey models on the extent of the study area 
underscored some key features. In Quercus forest, Shannon index ranged from just 
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above 0 to 1.8. These values are in the range of variation of data collected on plots. 
However, the RMSE of 0.21 seemed a bit too high when reported to values Shannon 
index can take. The range of variation of MEAN_DBH in Quercus forest is from 2 to 17 
cm with an RMSE=1.3 cm. Although the majority of values lies between 2 to 13 cm, the 
model tends to overestimate the MEAN_DBH since in the plot data we did not have mean 
BDH exceeding 14 cm. 

In Mixed forest, MEAN_HTOT went up to 11 m, with the majority of grids falling between 
5 and 9 m. The RMSE was about 0.43 indicating a good prediction with a very low error. 
The number of plants per grid in the Mixed forest ranged from less than five to 33 with an 
RMSE of 3.84.  this model tended to overestimate the number of plants per grid since the 
data collected on plots level displayed only a N_PLANTS up to 22. However, in this model,  
grids exceeding this limit are few (Figure 4-3 and Figure 4-4). We did not perform the 
spatialization of MEAN_DBH in Mixed forest even though the R2 was greater than 0.5 
because the linear model slope was close to zero (Table 4-8). Consequently, there is no 
big variability in the prediction. 

 
Figure 4-4.  Spatialization maps of the understorey data with R2 greater than 50% in Mixed and Quercus forests 
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4.3. Living trees 

Except for the total basal area (G_TOT) and total volume (V_TOT), all other variables 
denote significant differences among the three forest types (Table 4-11 and Figure 4-5). 
The two variables were not further discussed. We focused the analysis on the number of 
habitats, the percentage of habitat trees and Pretzch index. Living trees data is fairly well 
distributed in Mixed and Quercus forests. In Fagus forest, the data present some extreme 
values (Figure 4-5). 
Table 4-11. Summary of exploratory statistics on living trees 

Variables with normal distribution 
Variables ANOVA TUKEY 

N_PLANTS *** (1 vs 2)***; (2 vs 3)*** 
I_PRETZSCH *** (1 vs 2)***; (1 vs 3)*** 
G_TOT no significant difference  
V_TOT no significant difference  
HAB * (1 vs 2)** 
%_HAB ** (1 vs 2)* 

Non normal distributed variables 
Variables KRUSKAL-WALLIS MANN-WHITNEY 

N_SPECIES *** (1 vs 2)***; (1 vs 3)*** 
I_MARGALEF *** (1 vs 2)***; (1 vs 3)*** 
I_SHANNON *** (1 vs 2)***; (1 vs 3)*** 
MEAN_DBH *** (1 vs 2)***; (2 vs 3)*** 
MEAN_HTOT ** (1 vs 2)** 

*p<0,05; ** p<0,01; *** p<0,001; 1 = beech forest; 2 = oak forest; 3 = mixed forest 

 
Figure 4-5. Boxplot of the living trees data per forest type 

The average number of trees per plot in Fagus forest was only 16 with an average DBH 
per plot of 35, while Quercus forest depicted an opposite relation; the number of trees 
was 44 with an average DBH per plot of 19. Mixed forest depicted intermediate results. 
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Basically, forest stands in Fagus forest although having a larger diameter and height 
compared to mixed and Quercus forest (Table 4-12) are characterized by a scarcely 
diversified vertical structure, as reflected by the significantly lower value of the Pretzch 
index (Figure 4-5). 
Table 4-12. Summary of living trees data per plot 

Forest type Mean 
N_PLANTS  Mean HAB Mean %_HAB Mean MEAN_DBH Mean MEAN_HTOT 

Fagus 16 6 47 35 20 
Quercus 44 11 25 19 13 
Mixed 22 9 42 28 17 

 

4.3.1. Correlation analysis of living trees data in Quercus forest 
The use of a 2m2 threshold considerably improved correlations. Of the indices on Table 
4-13,  only MEAN_DBH and MEAN_HTOT produced better results with a 1m2 threshold. 
Pretzsch index yielded the highest correlation with values of -0.87 and -0.90 for Pearson 
and Spearman correlations, respectively.  
Table 4-13. Coefficient of correlations of Pearson and Spearman for some selected explicative and living trees 
dependent variables in Quercus forest 

 N_SPECIES I_SHANNON I_MARGALEF I_PRETZSCH MEAN_DBH MEAN_HTOT HAB %HAB 
Sd_rect_fit Cv_Density Sd_rect_fit Sd_Density Sum_rect.fit Mdn_rect.fit Sum_rect.fit Sum_RLE 

Threshold 2m2 2m2 2m2 2m2 1m2 1m2 2m2 2m2 
Pearson -0.68 -0.64 -0.71 -0.87 0.61 0.59 -0.79 -0.71 
Spearman -0.72 -0.61 -0.74 -0.90 0.70 0.56 -0.70 -0.64 

 

The goodness of fit in the Quercus forest depicted values ranging from 0.29 to 0.74 
corresponding to MEAN_HTOT and I_PRETZSCH, respectively. Up to 59% of variability 
in the number of habitat trees were explained by sum_Elip.fit, whereas the percentage of 
habitat trees had a lower adjusted R2 (R2 =0.47) (Table 4-14 and Table 4-15).  
Table 4-14. Results of linear regression of living trees data in Quercus forest 

N_SPECIES I_SHANNON I_MARGLEF I_ PRETZSCH 
N=13 B SE 

(B) 
R2 p-value  B SE 

(B) 
R2 p-value  B SE 

(B) 
R2 p-value  B SE 

(B) 
R2 p-value 

Linear regr.     Linear regr     Linear regr     Linear regr     
Intercept 8.13 0.71  0.000 Intercept 1.81 0.14  0.000 Intercept 1.94 0.18  0.000 Intercept 2.32 0.1  0.000 
Sd_rect_fit -21.46 7.04 0.41 0.011 Cv_Density -2.61 0.95 0.35 0.019 Sd_rect_fit -6..02 1.80 0.46 0.006 Sd_Density -2.68 0.45 0.74 0.000 

 
Table 4-15. Results of linear regression of living trees data in Quercus forest (continuation….) 

MEAN_DBH MEAN_HTOT HAB %HAB 
N=13 B SE 

(B) 
R2 p-value  B SE 

(B) 
R2 p-value  B SE 

(B) 
R2 p-value  B SE 

(B) 
R2 p-value 

Linear regr.     Linear regr     Linear regr     Linear regr     
Intercept 11.30 3.42  0.007 Intercept -15.73 11.99   Intercept 20.54 2.44  0.000 Intercept 41.87 5.45  0.000 
Sum_rect.fit 1.29 0.50 0.32 0.02 Mdn_rect.fit 45.41 18.68 0.29 0.033 Sum_rect.fit -3.10 0.73 0.59 0.001 Sum_RLE -1.86 0.54 0.47 0.006 

 

4.3.2. Correlation analysis of living trees data in Mixed forest 
In mixed forest, only four indices showed a strong correlation with patch metrics.  Apart 
MEAN_DBH, which depicted a positive correlation, the three other indices were 
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negatively correlated with a select patch metrics. The number of habitat trees (HAB) 
produced the highest correlation with a value of 0.90 for Pearson correlation and 0.92 for 
Spearman correlation (Table 4-16). 
Table 4-16. Coefficient of correlations of Pearson and Spearman for some selected explicative and living trees 
dependent variables in Mixed forest 

 MEAN_DBH MEAN_HTOT  HAB %HAB 
Avg_Round. Sd_Asym. Cv_Length Avg_RSE 

Threshold 2m2 1m2 2m2 1m2 
Pearson 0.74 -0.84 -0.90 -0.83 
Spearman 0.82 -0.95 -0.92 -0.92 

 

Variabilities in HAB, %HAB, MEAN_HTOT, and MEAN_DBH are explained at 79%, 64%, 
67% and 49% by cv_length, avg_RSE, sd_Asym and avg_Round, respectively (Table 
4-17). 
Table 4-17. Results of linear regression of living trees data in Mixed forest  

MEAN_DBH MEAN_HTOT HAB %HAB 
N=9 B SE 

(B) 
R2 p-value  B SE 

(B) 
R2 p-value  B SE 

(B) 
R2 p-value  B SE 

(B) 
R2 p-value 

Linear regr.     Linear regr     Linear regr     Linear regr     
Intercept -10.86 13.32   Intercept 27.74 2.70  0.000 Intercept 14.34 1.20  0.000 Intercept 108.24 17.54  0.000 
Avg_Round 25.92 8.86 0.49 0.022 Sd_Asym. -49.06 11.72 0.67 0.004 Cv_Length -14.01 2.51 0.79 0.000 Avg_RSE -208.99 53.19 0.64 0.005 

 

4.3.3. Correlation analysis of living trees data in the Fagus forest 
The correlation is only obtained with the threshold of 2m2. HAB and %HAB were the only 
indices that depicted a correlation although weak with values not exceeding 0.50 (Table 
4-18). 
Table 4-18. Coefficient of correlations of Pearson and Spearman for some selected explicative and living trees 
dependent variables in Fagus forest 

2m HAB %HAB 
cv_PFD Avg_RSE 

Pearson 0.43 -0.38 
Spearman 0.50 -0.39 

 

Variabilities in HAB and %HAB explained by the linear regression models presented in 
Table 4-19 are low. The percentage explained remains 15% for HAB and 11% for %HAB. 
Table 4-19. Results of linear regression of living trees data in Fagus forest  

HAB %HAB 
N=28 B SE 

(B) 
R2 p-

value 
 B SE 

(B) 
R2 p-

value 
Linear regr.     Linear regr     
Intercept 4.00 1.21  0.003 Intercept 61.35 7.88  0.000 
cv_PFD 11.82 5.23 0.15 0.034 Avg_RSE -58.21 27.71 0.11 0.045 

 

The generalization of regression models obtained is presented in Figure 3-1. In Quercus 
forest, I_PRETZSCH varied from 1 to 2.4 with RMSE of 0.40. The majority of grids had 
the index higher than 1.7 indicating a complex vertical structure. The range of variation of 
the index is in accordance with the field data collected on plots. In the same forest type, 
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the number of habitat trees reached 20 with RMSE of 3.89. The western side of the forest 
has more forest habitat trees than the eastern side. 

 
Figure 4-6. Spatialization of living trees parameters with R2 greater than 50% in Mixed and Quercus forests 

In Mixed forest, the majority of grids had a number of habitat trees higher than 9. In this 
forest, the prediction error is relatively smaller with an RMSE of 1.6. the percentage of 
habitat trees per grid is more variable with values ranging from 0 to 100%. The model 
added more variability than the one observed on plots level. The MEAN_HTOT varied 
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from 6 to 28 m with an RMSE of 1.86. An error that can be considered as low. However, 
the range of values of the MEAN_HTOT in the whole forest is larger than the one 
observed on plots level where the range was 12 to 23 m. 

4.4. Deadwood  

4.4.1. Exploratory analysis 
There is no difference among lying deadwood, standing deadwood and stumps in 
different forest types. Similarly, the volume of deadwood by decay class is not significantly 
different in different forest types. The deadwood volume is highly skewed with many nil 
values. Although the Figure 4-7 shows that there are many outliers, the field survey 
proved that there are actual plots with high deadwood while there are some plots with no 
deadwood at all. Therefore, it is misleading to consider these plots as outliers. A square 
root transformation improved the data distribution by reducing the skewness particularly 
with the total lying deadwood, the total standing deadwood, total deadwood, VOL1, VOL3  
and VOL4 (Figure 4-7). 

 
Figure 4-7. Boxplot chart of the deadwood data. On the left, the natural values and on the right the square root 
transformation 

4.4.2. Correlation analysis 
Total lying deadwood, total stumps, total standing deadwood, and VOL1, VOL2, and the 
total volume of deadwood in the plot are significantly correlated with gap patch metrics 
(Table 4-20). The strongest correlation is in total lying deadwood and the weakest one is 
found in VOL1.  
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Table 4-20. Coefficient of correlation of Pearson and Spearman associated to the deadwood 

 TOT_LYING TOT_STUMP TOT_STAND VOL1 VOL2 VOL_TOT 
Sd_GSCI Cv_Density Sd_FD Sd_FD Cv_GSCI Cv_GSCI 

Threshold 1m2 1m2 2m2 2m2 1m2 1m2 
Pearson -0.53 -0.30 -0.41 -0.33 -0.42 -0.39 
Spearman -0.46 -0.34 -39 -0.30 -0.37 -0.34 

 

The regression analysis and its assumptions verification showed that none of the 
deadwood parameters fully satisfies the linear regression assumptions. For instance, 
TOT_STAND violates the skewness assumption and VOL_TOT violates all the 
assumptions, namely independence of residuals, homoscedasticity and residuals 
normally distributed (skewness and Kurtosis).   
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Chapter 5. DISCUSSIONS 

5.1. Mapping forest canopy gaps 

Gap mapping from UAV RGB 10 cm resolution images seems to produce very promising 
results. In this study, we accomplished mapping gaps as small as one pixel corresponding 
in fact to intra-canopy openings. This very high spatial resolution mapping of gaps is 
important because some ecological phenomena, such as understorey structure 
dependencies, are only quantifiable if small gaps are taken into account. Since there is 
not yet a rule for minimum gap size, different authors set, arbitrarily a minimum gap size 
of  1m2 (Getzin, Wiegand, and Schöning 2012; Getzin, Nuske, and Wiegand 2014; Boyd et al. 2013; 
Busing 1994), 5 m2 (Vepakomma, St-Onge, and Kneeshaw 2008), 10 m2 (Schliemann and Bockheim 
2011; Zielewska-Büttner, Adler, Ehmann, et al. 2016a) and 50 m2 (Bonnet et al. 2015). To 
circumvent this lack in the literature, we did not set any gap size limit but let the ecological 
phenomenon under investigation dictates the gap size limit relevant. Hobi et al. (2015) used 
the same approach by not setting any gap size limit. The gap mapping used in this paper 
does not take into account the vegetation height. Therefore, our mapping, although 
consistent with the definition given by Brokaw (1982), focusses only on shaded gaps or 
dark objects. Zielewska-Büttner, Adler, Ehmann, et al. (2016) reported as well that in their 
attempt to map forest canopy gaps, the shadow occurrence and forest height affected the 
mapping accuracy. 

Many other authors who mapped forest gaps from remote sensing point of view used 
either the LiDAR-derived forest canopy model (Boyd et al. 2013), or RGB imagery 
photogrammetric derived CHM (Zielewska-Büttner, Adler, Ehmann, et al. 2016b; Zielewska-
Büttner, Adler, Petersen, et al. 2016; Betts, Brown, and Stewart 2005). Alternatively, fish eye 
(Perroy, Sullivan, and Stephenson 2017), or terrestrial laser can be used. All those techniques, 
although effective, are not affordable for small forest land owners. 

Furthermore, the forest canopy mapping was highly affected by the quality of the 
orthomosaic and images acquisition conditions. In this study, the orthomosaic 
coregistration presented some flaws in certain areas. Those areas denoted a low quality 
in gaps delineation and even in the visual interpretation of what constitutes a gap. The 
second limitation came from the difference in reflectance between the dataset acquired 
in the two consecutive days. Although the images were acquired at noon to reduce the 
bidirectional reflectance effect (Lehmann et al. 2015), the sun illumination between the two 
days was not the same; leading thus to two set of images with slightly different brightness.  

In addition, the eBee NIR image presented a serious limitation in its use for mapping 
forest canopy gaps. As shown in Figure 3-5, the camera is less sensible in near infrared 
channel compared to the red and the green channels. In fact, the near infrared sensibility 
of the camera covers as well the whole visible range. Consequently, the near infrared 
channel constitutes one kind of panchromatic extending to near infrared region. Besides 
this spectral resolution deficiency, the NIR camera data has a spatial resolution of 20 cm 
compared to 10 cm for the RGB. As result, the NIR camera data was not of great utility 
we hypothesized beforehand. 
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Finally, the contrast split algorithm utilized here with the reference layer being the red 
band separated dark objects from bright ones based on the reflectance of image objects. 
However, the algorithm failed to detect illuminated canopy gaps where the bare soil is 
visible because the bare soil reflectance is as high as the one of the vegetation. Therefore, 
the algorithm missed big gaps with no vegetation but with apparent bare soil.  

5.2. Assessing understorey through forest canopy gaps 

Overall, mixed forest yielded the best results (Figure 5-1). It showed a significant 
correlation with almost all indices. The highest adjusted R2 was as well obtained in Mixed 
forest with a value of 0.87. Fagus forest underperformed the two other forest types. In 
mixed forest, only three indices had shown a significant correlation, namely 
MEAN_HTOT, MEAN_DBH, , and N_PLANTS. Intermediate results were obtained in 
Quercus forest in which the adjusted R2 obtained were relatively lower compared to 
results in mixed forest except for MEAN_DBH and I_SHANNON. The regression with five 
field parameters (MEAN_HTOT, MEAN_DBH, , and N_PLANTS in Mixed forest, and 
MEAN_DBH and I_SHANNON in Quercus forest) exceeded the threshold of adjusted R2 
of 0.5 (Figure 5-1). 

 
Figure 5-1. Summary bar chart of adjusted R2 from linear regression with understorey data in all the three forest types 

Forest canopy gaps is a good proxy for assessing forest horizontal structure such as 
N_PLANTS, N_SPECIES, I_SHANNON, I_PIELOU, MEAN_DBH, and G_TOT of forest 
understorey. The number of species was negatively correlated with patch metrics in both 
Fagus and Quercus forests but was positively correlated in mixed forest. And finally, an 
increase in RSE means a proportional increase in the number of species in mixed forest. 
In fact, the big radius of smallest enclosed ellipse indicates that the gap patch itself is big 
and therefore open to light to allow development of understorey species. 

The number of plants in both Quercus and Mixed forests can be assessed respectively 
by the mdn_GSCI and avg_Round. The correlation between gap metrics and understory 
in Fagus forest might not have been significant because of the lower vertical structural 
diversification of this forest type in the examined conditions. In mixed forest, the number 
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of plants decreased when gaps have shapes differing from an ellipse, whereas in Quercus 
forest, more complex shapes of gaps led to more number of species. The result in mixed 
forest is quite unexpected since more complex shapes (an ellipse is a regular shape) 
should be associated with more horizontal structure richness. The understorey diversity 
indicators (I_PIELOU and I_SHANNON) were strongly correlated with patch metrics in 
the three types of forest. 

The canopy gaps patch metrics can be distinguished into two groups; the ones informing 
on the shape of the gap and the ones referring to the extent. Of the patch metrics 
correlated to the understorey parameters, only Cv_Length is extent related patch metric. 
This suggests that the shape of the gap has more effect on the understory than its extent 
solely. This finding must be taken into account when silviculture activities aim to mimic 
natural gap creation so to trigger forest dynamics in managed forests. Despite this 
findings, many authors have only focused on mapping forest canopy gaps’ size and their 
spatial distribution. For instance, Garbarino et al. (2012) and Hobi et al. (2015) mapped gaps’ 
size and their distribution from satellite imagery, whereas Zielewska-Büttner, Adler, Ehmann, 
et al. (2016b) did the same study using CHM. 

5.3. Assessing living trees through forest canopy gaps 

In mixed forest, only four indices were correlated with patch metrics compared to Quercus 
forest where all indices are correlated. However, adjusted R2 values outperformed in 
mixed forest with values ranging from 0.49 to 0.79. The performance of linear regression 
is the lowest in Fagus forest. In Mixed forest, three of the correlated parameters namely, 
%HAB, HAB, and MEAN_HTOT exceeded the threshold of R2 > 0.5. The two field 
parameters in Quercus forest that were best correlated to gap metrics were the number 
of habitat (HAB) and total mean height (MEAN_HTOT) (Figure 5-2). 

 
Figure 5-2. Summary bar chart of adjusted R2 from linear regression with living trees data in all the three forest types 

The number of habitat trees and their percentage are functional forest ecosystems 
attributes and are considered difficult to measure directly (Franklin et al. 2002) particularly 
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using remote sensing. These two attributes proved they could be assessed using the 
forest canopy gaps as a surrogate variable. In fact, habitat trees, which are old large trees, 
create a structural diversity because of their multiple and dead tops, bole and top decays. 
This specific structure influences the canopy arrangement and creates, therefore, small 
canopy gaps with specific patch metrics that can be used as a footprint of habitat trees. 
The only field parameters in Fagus forest correlated with gap patch metrics were the 
number of habitat trees and their percentage because it is only habitat trees (e.g. sanags, 
broken or partially dead crown) that cause perforation in the canopy layer of that forest 
type at this early development stage.  

In addition, in general, results were poor in Fagus forest because of the plot size. Fagus 
forest was constituted with few and big trees per plot. These horizontal and vertical 
structures make it impossible to observe a great variety of canopy gaps, where present, 
in a plot of only 529 m2. In their study, Getzin, Wiegand, and Schöning (2012) used plots of 
one (1) hectare which is much larger (almost twenty times bigger) than the plot size in 
this study.  

Similarly, poor results obtained for the deadwood could be explained by the fact that on 
one hand, forest canopy gaps explored in this study are not necessary gaps due to the 
death of trees but can just be gaps created by the spatial arrangement of the canopy layer 
due to trees shape. On the other hand, the quantity of deadwood found in plots itself is 
low with some plots missing some categories of deadwood. This low variability in the 
collected deadwood makes correlation analysis less feasible. 
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Chapter 6. CONCLUSIONS AND RECOMMENDATIONS 

The main aim of this study was to map forest canopy gaps on small scale level and assess 
how some forest parameters could be assessed using solely forest canopy gaps shape 
and extent metrics extracted from UAV RGB imagery. Forest canopy openings were 
faithfully extracted from the 10cm spatial resolution UAV RGB orthomosaic. The mapping 
performed relatively poorly when the gap was illuminated with the bare soil being 
apparent. 

The forest canopy gap patch metrics (which inform on the size and the shape of canopy 
gaps within a square grid of 23 m of side) were strongly collinear. They showed a strong 
correlation with the field data especially in the understory and the living trees. For 
understory data, five field parameters depicted an R2 greater than 0.5 with the highest 
being equal to 0.87. Results were better in mixed forest followed by Quercus forest while 
poor results were obtained in Fagus forest. 

Similarly, the living tree data yielded results comparable to the understorey data. Many 
correlations were observed between the field parameters and the gap patch metrics. 
About five field parameter led to an R2 greater than 0.5. Of the living data parameters, the 
number of habitat trees in mixed forest had the highest R2 with a value of 0.79. In Fagus 
forest, only the number of habitat trees and the percentage of habitat trees showed a 
correlation. The number of field parameters with high correlations in Quercus forest is 
higher than the one in mixed forest.  

The model failed to predict the deadwood as a whole, by deadwood components or 
separated into decay classes. As a general remark, most patch metrics that depicted 
considerable correlation with field parameter in both living trees and understorey data, 
were shape related patch metrics.  

The spatialization of the forest field parameters models in both Quercus and Mixed forests 
for the understorey and living trees data underscored the models validity with low RMSEs 
although in some cases the model tended to introduce more variability in data than the 
one observed on plots.  

Final recommendations for replicating and improving the methodological approach in 
other test sites are:  

[1] In general, the forest canopy mapping could be improved by integrating the NIR 
band; thus the panchromatic layer should be narrowed.  

[2] The collection of the RBG data should be done within the same day with a short 
duration. 

[3] The field data should be collected on plots bigger than 529 m2 in order to include 
more variability and integrate big gaps which may give better insight for forest 
types such as Fagus forest, especially when entering older development stages 
typically characterized by gap formation, and significant development of new 
vegetation in the understory.  
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